Boundedness and stability criteria for linear ordinary differential equations of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish some correlations for solutions of ordinary differential equations and the imaginary part of the complex solution of the corresponding Riccati equation. On the basis of these correlations and the I. M. Sobol' theorem we prove some new stability and boundedness criteria for linear equations of the second order.
Keywords: complex solution of Riccati equation, I.M. Sobol' theorem, boundedness, Lyapunov stability, asymptotic stability.
@article{IVM_2013_12_a1,
     author = {G. A. Grigoryan},
     title = {Boundedness and stability criteria for linear ordinary differential equations of the second order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--18},
     publisher = {mathdoc},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_12_a1/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - Boundedness and stability criteria for linear ordinary differential equations of the second order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 11
EP  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_12_a1/
LA  - ru
ID  - IVM_2013_12_a1
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T Boundedness and stability criteria for linear ordinary differential equations of the second order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 11-18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_12_a1/
%G ru
%F IVM_2013_12_a1
G. A. Grigoryan. Boundedness and stability criteria for linear ordinary differential equations of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 11-18. http://geodesic.mathdoc.fr/item/IVM_2013_12_a1/

[1] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964

[2] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[3] Adrianova L. Ya., Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo S.-Pb. un-ta, S-Pb., 1992 | MR

[4] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[5] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, In. lit., M., 1954 | MR

[6] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Mir, M., 1953

[7] Sobol I. M., “Issledovanie asimptoticheskogo povedeniya reshenii lineinykh differentsialnykh uravnenii vtorogo poryadka pri pomoschi polyarnykh koordinat”, Matem. sb., 28(70):3 (1951), 707–714 | MR | Zbl

[8] Gusarov L. A., “O stremlenii k nulyu reshenii lineinykh differentsialnykh uravnenii vtorogo poryadka”, DAN SSSR, 71:1 (1950), 9–12 | MR | Zbl

[9] Bibikov Yu. N., Kurs obyknovennykh differentsialnykh uravnenii, Vyssh. shkola, M., 1991