A periodic boundary value problem for a~fourth-order differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain sufficient solvability conditions for a periodic boundary value problem for a fourth-order ordinary differential equation. The research technique is based on the solvability theorem for a quasilinear operator equation in the case of resonance. We formulate sufficient conditions for the existence of periodic solutions in terms of the original equation. We show that the main result of this paper clarifies the existence theorem established by B. Mehry and D. Shadman in Sci. Iran. 15 (2), 182–185 (2008).
Keywords: fourth-order differential equation, periodic solution, resonance.
@article{IVM_2013_12_a0,
     author = {A. R. Abdullaev and E. A. Skachkova},
     title = {A periodic boundary value problem for a~fourth-order differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_12_a0/}
}
TY  - JOUR
AU  - A. R. Abdullaev
AU  - E. A. Skachkova
TI  - A periodic boundary value problem for a~fourth-order differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_12_a0/
LA  - ru
ID  - IVM_2013_12_a0
ER  - 
%0 Journal Article
%A A. R. Abdullaev
%A E. A. Skachkova
%T A periodic boundary value problem for a~fourth-order differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_12_a0/
%G ru
%F IVM_2013_12_a0
A. R. Abdullaev; E. A. Skachkova. A periodic boundary value problem for a~fourth-order differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2013_12_a0/

[1] Azbelev N. V., Maksimov V. P., Razmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[2] De Coster C., Fabry C., Munyamarere F., “Nonresonance conditions for fourth-order nonlinear boundary value problems”, Internat. J. Math. Sci., 17:4 (1994), 725–740 | DOI | MR | Zbl

[3] Pinda L., “On a fourth order periodic boundary value problem”, Arch. Math. (Brno), 30:1 (1994), 1–8 | MR | Zbl

[4] Bereanu C., “Periodic solutions of some fourth-order nonlinear differential equations”, Nonlinear Anal.: Theory, Methods Appl., 71:1–2 (2009), 53–57 | DOI | MR | Zbl

[5] Yao Q., “Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem”, Nonlinear Anal.: Theory, Methods Appl., 63:2 (2005), 237–246 | DOI | MR | Zbl

[6] Pietramala P., “A note on a beam equation with nonlinear boundary conditions”, Boundary Value Problems, 2011 (2011), Art. ID 376782, 14 pp. | DOI | MR

[7] Mehri B., Shadman D., “On the existence of periodic solutions for nonlinear ordinary differential equations”, Sci. Iran., 15:2 (2008), 182–185 | MR | Zbl

[8] Abdullaev A. R., Burmistrova A. B., Elementy teorii topologicheski neterovykh operatorov, Chelyabinsk. gos. un-t, Chelyabinsk, 1994

[9] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2002

[10] Abdullaev A. R., “O razreshimosti kvazilineinykh kraevykh zadach dlya funktsionalno-differentsialnykh uravnenii”, Funkts.-differents. uravneniya, Perm, 1992, 80–87

[11] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR | Zbl