Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_11_a6, author = {A. N. Frolov}, title = {A note on $\Delta_2^0$-spectra of linear orderings and degree spectra of the successor relation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--78}, publisher = {mathdoc}, number = {11}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_11_a6/} }
TY - JOUR AU - A. N. Frolov TI - A note on $\Delta_2^0$-spectra of linear orderings and degree spectra of the successor relation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 74 EP - 78 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_11_a6/ LA - ru ID - IVM_2013_11_a6 ER -
A. N. Frolov. A note on $\Delta_2^0$-spectra of linear orderings and degree spectra of the successor relation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 74-78. http://geodesic.mathdoc.fr/item/IVM_2013_11_a6/
[1] Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, per. s angl., Kazansk. matem. o-vo, Kazan, 2000 | MR | Zbl
[2] Rosenstein J. R., Linear orderings, Pure and Applied Mathematics, 98, Academic Press Inc., Hartcourt Brace Jovanovich Publishers, New York–London, 1982 | MR | Zbl
[3] Downey R. G., Recursion theory and linear orderings, Handbook of computable algebra, eds. Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, 1998
[4] Frolov A., Harizanov V., Kalimullin I., Kudinov O., Miller R., “Spectra of $\mathrm{high}_n$ and $\mathrm{nonlow}_n$ degrees”, J. Logic Computation, 22:4 (2012), 745–754 | DOI | MR | Zbl
[5] Miller R., “The $\Delta_2^0$ spectrum of a linear ordering”, J. Symbolic Logic, 66:2 (2001), 470–486 | DOI | MR | Zbl
[6] Frolov A. N., “$\Delta_2^0$-kopii lineinykh poryadkov”, Algebra i logika, 45:3 (2006), 354–370 | MR | Zbl
[7] Frolov A. N., “Predstavleniya otnosheniya sosedstva vychislimogo lineinogo poryadka”, Izv. vuzov. Matem., 2010, no. 7, 73–88 | MR
[8] Downey R., Lempp S., Wu G., “On the complexity of the successivity relation in computable linear orderings”, J. Math. Logic, 83:10 (2010), 83–99 | DOI | MR | Zbl
[9] Jockusch C. G. (jr.), Soare R. I., “Degrees of orderings not isomorphic to recursive linear orderings”, Ann. Pure Appl. Logic, 52:1–2 (1991), 39–64 | DOI | MR | Zbl
[10] Downey R. G., Knight J. F., “Orderings with $\alpha$-th jump degree $0^{(\alpha)}$”, Proc. Amer. Math. Soc., 114:2 (1992), 545–552 | MR | Zbl
[11] Downey R., Moses M., “Recursive linear orders with incomplete successivities”, Trans. Amer. Math. Soc., 326:2 (1991), 653–668 | DOI | MR | Zbl