Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_11_a5, author = {M. F. Davletbaev and K. B. Igudesman}, title = {Fractal approximation of vector functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {69--73}, publisher = {mathdoc}, number = {11}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_11_a5/} }
M. F. Davletbaev; K. B. Igudesman. Fractal approximation of vector functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 69-73. http://geodesic.mathdoc.fr/item/IVM_2013_11_a5/
[1] Barnsley M. F., “Fractal functions and interpolation”, Constructive Approximation, 2 (1986), 303–329 | DOI | MR | Zbl
[2] Massopust P., Interpolation and approximation with splines and fractals, Oxford University Press, Oxford, 2010 | MR | Zbl
[3] Igudesman K., Shabernev G., “Novel method of fractal approximation”, Lobachevskii J. Math., 34:2 (2013), 125–132 | DOI | MR | Zbl
[4] Barnsley M. F., Hurd L. P., Fractal image compression, Wellesley, MA, 1993 | MR
[5] Barnsley M. F., Fractals everywhere, Academic Press Inc., Boston, 1988 | MR | Zbl
[6] Magnus J. R., Neudecker H., Matrix differential calculus with applications in statistics and econometrics, 3rd Ed., John Wiley Sons, Ltd., Chichester, 2007 | MR