Fractal approximation of vector functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 69-73
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a new approach to the approximation of continuous vector-valued functions by fractal interpolative vector-valued ones and find optimal values of their parameters. We illustrate the obtained results with examples.
Mots-clés :
fractal interpolation
Keywords: approximation, iterated function systems, attractor.
Keywords: approximation, iterated function systems, attractor.
@article{IVM_2013_11_a5,
author = {M. F. Davletbaev and K. B. Igudesman},
title = {Fractal approximation of vector functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--73},
year = {2013},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_11_a5/}
}
M. F. Davletbaev; K. B. Igudesman. Fractal approximation of vector functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 69-73. http://geodesic.mathdoc.fr/item/IVM_2013_11_a5/
[1] Barnsley M. F., “Fractal functions and interpolation”, Constructive Approximation, 2 (1986), 303–329 | DOI | MR | Zbl
[2] Massopust P., Interpolation and approximation with splines and fractals, Oxford University Press, Oxford, 2010 | MR | Zbl
[3] Igudesman K., Shabernev G., “Novel method of fractal approximation”, Lobachevskii J. Math., 34:2 (2013), 125–132 | DOI | MR | Zbl
[4] Barnsley M. F., Hurd L. P., Fractal image compression, Wellesley, MA, 1993 | MR
[5] Barnsley M. F., Fractals everywhere, Academic Press Inc., Boston, 1988 | MR | Zbl
[6] Magnus J. R., Neudecker H., Matrix differential calculus with applications in statistics and econometrics, 3rd Ed., John Wiley Sons, Ltd., Chichester, 2007 | MR