On boundedness and compactness of multidimensional integral operators with homogeneous kernels
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the boundedness and compactness of multidimensional integral operators with homogeneous kernels acting from a weighted $L_p$-space to a weighted $L_q$-space.
Keywords: multidimensional integral operator, homogeneous kernel, boundedness, compactness.
@article{IVM_2013_11_a4,
     author = {O. G. Avsyankin and F. G. Peretyat'kin},
     title = {On boundedness and compactness of multidimensional integral operators with homogeneous kernels},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--68},
     publisher = {mathdoc},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_11_a4/}
}
TY  - JOUR
AU  - O. G. Avsyankin
AU  - F. G. Peretyat'kin
TI  - On boundedness and compactness of multidimensional integral operators with homogeneous kernels
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 64
EP  - 68
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_11_a4/
LA  - ru
ID  - IVM_2013_11_a4
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%A F. G. Peretyat'kin
%T On boundedness and compactness of multidimensional integral operators with homogeneous kernels
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 64-68
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_11_a4/
%G ru
%F IVM_2013_11_a4
O. G. Avsyankin; F. G. Peretyat'kin. On boundedness and compactness of multidimensional integral operators with homogeneous kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 64-68. http://geodesic.mathdoc.fr/item/IVM_2013_11_a4/

[1] Karapetiants N., Samko S., Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl

[2] Karapetyants N. K., “O neobkhodimykh usloviyakh ogranichennosti operatora s neotritsatelnym kvaziodnorodnym yadrom”, Matem. zametki, 30:5 (1981), 787–794 | MR | Zbl

[3] Karapetyants N. K., “Polnaya nepreryvnost nekotorykh klassov operatorov tipa svertki i s odnorodnymi yadrami”, Izv. vuzov. Matem., 1981, no. 11, 71–74 | MR | Zbl

[4] Avsyankin O. G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 73:4 (2003), 483–493 | DOI | MR | Zbl

[5] Avsyankin O. G., Karapetyants N. K., “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Matem. zametki, 75:2 (2004), 163–172 | DOI | MR | Zbl

[6] Avsyankin O. G., “O mnogomernykh integralnykh operatorakh s odnorodnymi yadrami i ostsilliruyuschimi radialnymi koeffitsientami”, Differents. uravneniya, 43:9 (2007), 1193–1196 | MR | Zbl

[7] Avsyankin O. G., “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR | Zbl

[8] Karapetyants N. K., “Ob odnom analoge teoremy Khermandera dlya oblastei, otlichnykh ot $\mathbb R^n$”, DAN SSSR, 293:6 (1987), 1294–1297 | MR | Zbl