Connectivity estimations of errors of linearization of essentially nonlinear systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 51-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear dynamical system with several connectivity components. It includes subsystems which can be switched off or on in the operation process, i.e., the system undergoes structural changes. It is well-known that such systems are stable with respect to the connectivity. This property is known as the connectivity stability. In this paper we find an upper bound for the solution of the initial multiply-connected domain of a nonlinear dynamical system and obtain a connectivity estimation for its linearization error.
Keywords: asymptotic stability, Lyapunov vector function, connectivity estimation of the linearization error.
@article{IVM_2013_11_a3,
     author = {A. V. Shchennikov and V. N. Shchennikov},
     title = {Connectivity estimations of errors of linearization of essentially nonlinear systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--63},
     publisher = {mathdoc},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_11_a3/}
}
TY  - JOUR
AU  - A. V. Shchennikov
AU  - V. N. Shchennikov
TI  - Connectivity estimations of errors of linearization of essentially nonlinear systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 51
EP  - 63
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_11_a3/
LA  - ru
ID  - IVM_2013_11_a3
ER  - 
%0 Journal Article
%A A. V. Shchennikov
%A V. N. Shchennikov
%T Connectivity estimations of errors of linearization of essentially nonlinear systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 51-63
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_11_a3/
%G ru
%F IVM_2013_11_a3
A. V. Shchennikov; V. N. Shchennikov. Connectivity estimations of errors of linearization of essentially nonlinear systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 51-63. http://geodesic.mathdoc.fr/item/IVM_2013_11_a3/

[1] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967 | Zbl

[2] Zubov V. I., Ustoichivost dvizheniya, Vyssh. shkola, M., 1973 | MR | Zbl

[3] Kamenkov G. V., Ustoichivost dvizheniya. Kolebaniya. Aerodinamika, Izbr. tr., v. 1, Nauka, M., 1967

[4] Shestakov A. A., “O stepennoi asimptotike neavtonomnoi odnorodnoi i kvaziodnorodnoi sistemy”, Differents. uravneniya, 11:8 (1975), 1427–1436 | MR | Zbl

[5] Kosov A. A., “Ob ustoichivosti slozhnykh sistem po nelineinomu priblizheniyu”, Differents. uravneniya, 33:10 (1997), 1432–1434 | MR | Zbl

[6] Aleksandrov A. Yu., “Ob ustoichivosti slozhnykh sistem v kriticheskikh sluchayakh”, Avtomatika i telemekhanika, 2001, no. 9, 3–13 | MR | Zbl

[7] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[8] Druzhinina O. V., Metody analiza ustoichivosti dinamicheskoi prochnosti traektorii nelineinykh differentsialnykh sistem, Vychisl. tsentr im. Dorodnitsyna RAN, M., 2008

[9] Miroshnik I. V., Nikiforov V. O., Fradkov A. L., Nelineinoe adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami, Nauka, S.-Peterburg, 2000 | Zbl

[10] G. I. Marchuk, L. N. Belykh (Sost.), Matematicheskie modeli v immunologii i meditsine, Sb. statei 1982–1985 gg., Perevod s angl., Mir, M., 1986 | MR | Zbl

[11] Bellman R., Matematicheskie metody v meditsine, Mir, M., 1987 | MR | Zbl

[12] Darkhovskii B. S., “Otsenka pogreshnosti linearizatsii”, Differents. uravneniya, 14:7 (1978), 1313–1316 | MR

[13] Schennikov V. N., “Ob otsenke pogreshnostei linearizatsii nelineinoi differentsialnoi sistemy v kriticheskom sluchae”, Differents. uravneniya, 17:3 (1981), 568–571 | MR

[14] Schennikov V. N., Schennikova E. V., “Postroenie verkhnikh otsenok reshenii nelineinykh sistem differentsialnykh uravnenii i otsenok pogreshnostei linearizatsii”, Tr. SVMO, 8:1 (2006), 127–135 | MR

[15] Schennikova E. V., “Postroenie konnektivnykh otsenok pogreshnostei linearizatsii mnogosvyaznykh nelineinykh sistem”, Vestn. Sankt-Peterburgsk. un-ta, Ser. 10, 2007, no. 1, 76–83

[16] Zubov V. I., Kolebaniya v nelineinykh i upravlyaemykh sistemakh, Sudpromgiz, L., 1962 | MR

[17] Schennikov V. N., Schennikova E. V., “Otsenka pogreshnosti linearizatsii otnositelno chasti i vsekh fazovykh peremennykh”, Differents. uravneniya, 37:1 (2001), 132–133

[18] Emelyanov S. V., Izbrannye trudy po teorii upravleniya, Nauka, M., 2006

[19] A. A. Voronov, V. M. Matrosova (red.), Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987 | MR | Zbl

[20] Shilyak D. D., Detsentralizovannoe upravlenie slozhnymi sistemami, Mir, M., 1994

[21] Voronov A. A., Vvedenie v dinamiku slozhnykh upravlyaemykh sistem, Nauka, M., 1985 | MR

[22] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[23] Malikov A. I., “Matrichnye sistemy sravneniya v analize dinamiki sistem upravleniya so strukturnymi izmeneniyami”, Izv. RAN. TiSU, 1999, no. 3, 11–21 | MR | Zbl

[24] Grigorev V. V., “Sintez sistem upravleniya dlya sistem s izmenyayuschimisya parametrami”, Avtomatika i telemekhanika, 1983, no. 2, 64–70 | Zbl

[25] Pyatnitskii E. S., “O ravnomernoi ustoichivosti pri parametricheskikh vozmuscheniyakh”, Differents. uravneniya, 9:7 (1973), 1262–1274

[26] Gruiich L. T., Martynyuk A. A., Ribbens-Pavella M., Ustoichivost krupnomasshtabnykh sistem pri strukturnykh i singulyarnykh vozmuscheniyakh, Nauk. dumka, Kiev, 1984 | MR