Estimation of statistical characteristics of attainability sets of controllable systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an expansion of the notion of invariance for sets with respect to controllable systems and differential inclusions. Namely, we study statistically invariant sets and statistical characteristics of attainability sets of controllable systems. We obtain a lower bound for the lower relative frequency of the absorption of the attainability set of a system by a given set and establish new sufficient conditions of the statistical invariance of the set with respect to the controllable system. We give examples of the calculation of statistical characteristics for the linear Cauchy problem and a linear controllable system with almost periodic coefficients.
Keywords: controllable systems, dynamical systems, differential inclusions, statistically invariant sets.
@article{IVM_2013_11_a1,
     author = {L. I. Rodina},
     title = {Estimation of statistical characteristics of attainability sets of controllable systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--32},
     publisher = {mathdoc},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_11_a1/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - Estimation of statistical characteristics of attainability sets of controllable systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 20
EP  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_11_a1/
LA  - ru
ID  - IVM_2013_11_a1
ER  - 
%0 Journal Article
%A L. I. Rodina
%T Estimation of statistical characteristics of attainability sets of controllable systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 20-32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_11_a1/
%G ru
%F IVM_2013_11_a1
L. I. Rodina. Estimation of statistical characteristics of attainability sets of controllable systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2013), pp. 20-32. http://geodesic.mathdoc.fr/item/IVM_2013_11_a1/

[1] Ushakov V. N., Malev Ya. A., “K voprosu o defekte stabilnosti mnozhestv v igrovoi zadache o sblizhenii”, Tr. in-ta matem. i mekhaniki UrO RAN, 16, no. 1, 2010, 199–222

[2] Ushakov V. N., Zimovets A. A., “Defekt invariantnosti mnozhestv otnositelno differentsialnogo vklyucheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2011, no. 2, 98–111

[3] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[4] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2011, no. 1, 67–86

[5] Panasenko E. A., Rodina L. I., Tonkov E. L., “Asimptoticheski ustoichivye statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Tr. in-ta matem. i mekhaniki UrO RAN, 16, no. 5, 2010, 135–142

[6] Rodina L. I., “Statisticheskie kharakteristiki mnozhestva dostizhimosti i periodicheskie protsessy upravlyaemykh sistem”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2012, no. 2, 34–43

[7] Rodina L. I., “Statisticheski invariantnye mnozhestva upravlyaemykh sistem so sluchainymi parametrami”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 2011, no. 2, 68–87

[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[9] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[10] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[12] Danford N., Shvarts Dzh.-T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004

[13] Guselnikov N. S., “Treugolnye funktsii mnozhestva i teoremy Nikodima, Bruksa–Dzhevetta i Vitali–Khana–Saksa o skhodyaschikhsya posledovatelnostyakh mer”, Matem. sb., 202:6 (2011), 29–50 | DOI | MR | Zbl

[14] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949

[15] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[16] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[17] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999 | Zbl