Defining relations of a free modular lattice of rank $3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 69-72
Cet article a éte moissonné depuis la source Math-Net.Ru
For a $3$-generated free modular lattice we obtain a system of $11$ defining relations and prove this set to be minimal.
Keywords:
free modular lattices, defining relations.
@article{IVM_2013_10_a6,
author = {A. G. Gein and M. P. Shushpanov},
title = {Defining relations of a~free modular lattice of rank~$3$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--72},
year = {2013},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a6/}
}
A. G. Gein; M. P. Shushpanov. Defining relations of a free modular lattice of rank $3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 69-72. http://geodesic.mathdoc.fr/item/IVM_2013_10_a6/
[1] Ore O., “Remarks on structures and group relations”, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 85:32 (1940), 1–4 | MR | Zbl
[2] Ladzianska Z., “Modulyarnye podstruktury struktury”, Mat. časop., 24:1 (1974), 81–83 | MR
[3] Kolibiar M., “Distributive sublattices of a lattice”, Proc. Amer. Math. Soc., 34:2 (1972), 359–364 | DOI | MR | Zbl