On compact quantum semigroup $QS_\mathrm{red}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 63-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some properties of a reduced semigroup $C^*$-algebra of a semigroup $S$. For the semigroup $C^*$-algebra generated by the deformation of the algebra of continuous functions on a compact abelian group we obtain a structure of a compact quantum semigroup. We also consider morphisms of constructed compact quantum semigroups.
Keywords: $C^*$-algebra, compact quantum semigroup, isometric representation, morphisms of quantum semigroups.
@article{IVM_2013_10_a5,
     author = {M. A. Aukhadiev and S. A. Grigoryan and E. V. Lipacheva},
     title = {On compact quantum semigroup $QS_\mathrm{red}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--68},
     publisher = {mathdoc},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a5/}
}
TY  - JOUR
AU  - M. A. Aukhadiev
AU  - S. A. Grigoryan
AU  - E. V. Lipacheva
TI  - On compact quantum semigroup $QS_\mathrm{red}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 63
EP  - 68
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_10_a5/
LA  - ru
ID  - IVM_2013_10_a5
ER  - 
%0 Journal Article
%A M. A. Aukhadiev
%A S. A. Grigoryan
%A E. V. Lipacheva
%T On compact quantum semigroup $QS_\mathrm{red}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 63-68
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_10_a5/
%G ru
%F IVM_2013_10_a5
M. A. Aukhadiev; S. A. Grigoryan; E. V. Lipacheva. On compact quantum semigroup $QS_\mathrm{red}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 63-68. http://geodesic.mathdoc.fr/item/IVM_2013_10_a5/

[1] Drinfeld V. G., “Quantum groups”, Proceedings of International Congress of Mathematicians (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[2] Woronowicz S. L., “Twisted $\mathrm{SU}(2)$-group: an example of non-commutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl

[3] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[4] Maes A., Van Daele A., “Notes on compact quantum groups”, Nieuw Arch. Wisk., 4:16 (1998), 73–112 | MR

[5] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Infinite-dimensional compact quantum semigroup”, Lobachevskii J. Math., 32:4 (2011), 304–316 | DOI | MR | Zbl

[6] Kawamura K., “$C^*$-bialgebra defined by the direct sum of Cuntz algebras”, J. Algebra, 319 (2008), 3935–3959 | DOI | MR | Zbl

[7] Grigoryan S. A., Salakhutdinov A. F., “$C^*$-algebry, porozhdennye polugruppami”, Izv. vuzov. Matem., 2009, no. 10, 68–71 | MR | Zbl

[8] Grigoryan S. A., Salakhutdinov A. F., “$C^*$-algebry, porozhdennye polugruppami s sokrascheniem”, Sib. matem. zhurn., 51:1 (2010), 16–25 | MR | Zbl

[9] Aukhadiev M. A., Tepoyan V. H., “Isometric representations of totally ordered semigroups”, Lobachevskii J. Math., 33:3 (2012), 239–243 | DOI | MR | Zbl

[10] Woronowicz S. L., “Compact quantum groups”, Symetries quantiques, Les Houches, North-Holland, Amsterdam, 1995, 845–884 | MR