Explicit forms of the Schwarz integral and their application in inverse boundary-value problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 55-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new explicit forms of the Schwarz integral in the unit circle. With the help of superpositions of logarithms we establish criteria that characterize the appearance of singular points on the boundary in inverse boundary value problems, as well as criteria for the appearance of boundary circles.
Keywords: Schwarz integral, inverse boundary-value problems, modulus of continuity.
@article{IVM_2013_10_a4,
     author = {N. R. Abubakirov and L. A. Aksent'ev},
     title = {Explicit forms of the {Schwarz} integral and their application in inverse boundary-value problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--62},
     publisher = {mathdoc},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a4/}
}
TY  - JOUR
AU  - N. R. Abubakirov
AU  - L. A. Aksent'ev
TI  - Explicit forms of the Schwarz integral and their application in inverse boundary-value problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 55
EP  - 62
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_10_a4/
LA  - ru
ID  - IVM_2013_10_a4
ER  - 
%0 Journal Article
%A N. R. Abubakirov
%A L. A. Aksent'ev
%T Explicit forms of the Schwarz integral and their application in inverse boundary-value problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 55-62
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_10_a4/
%G ru
%F IVM_2013_10_a4
N. R. Abubakirov; L. A. Aksent'ev. Explicit forms of the Schwarz integral and their application in inverse boundary-value problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 55-62. http://geodesic.mathdoc.fr/item/IVM_2013_10_a4/

[1] Pykhteev G. N., Tochnye metody vychisleniya integralov tipa Koshi, Nauka, Novosibirsk, 1980 | MR | Zbl

[2] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazansk. un-ta, Kazan, 1965 | MR

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[4] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[5] Ivanov V. I., Popov V. Yu., Konformnye otobrazheniya i ikh prilozheniya, URSS, M., 2002

[6] Salimov R. B., “O povedenii singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Izv. vuzov. Matem., 2012, no. 6, 61–66 | MR | Zbl

[7] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. o-va, 5, 1956, 483–522 | MR | Zbl

[8] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR