On some functional calculus of closed operators in a~Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a functional calculus of closed operators in a Banach space based on the class of functions in the form $1/g$, where $g$ belongs to the class $R[a,b]$ introduced by M. G. Krein. We prove continuity, stability, uniqueness, spectral mapping, and inverse operator theorems and describe some other properties of the considered calculus.
Keywords: Krein class, operator monotone function, closed operator, functional calculus.
@article{IVM_2013_10_a0,
     author = {A. A. Atvinovskii and A. R. Mirotin},
     title = {On some functional calculus of closed operators in {a~Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/}
}
TY  - JOUR
AU  - A. A. Atvinovskii
AU  - A. R. Mirotin
TI  - On some functional calculus of closed operators in a~Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 15
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/
LA  - ru
ID  - IVM_2013_10_a0
ER  - 
%0 Journal Article
%A A. A. Atvinovskii
%A A. R. Mirotin
%T On some functional calculus of closed operators in a~Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-15
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/
%G ru
%F IVM_2013_10_a0
A. A. Atvinovskii; A. R. Mirotin. On some functional calculus of closed operators in a~Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/