On some functional calculus of closed operators in a~Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a functional calculus of closed operators in a Banach space based on the class of functions in the form $1/g$, where $g$ belongs to the class $R[a,b]$ introduced by M. G. Krein. We prove continuity, stability, uniqueness, spectral mapping, and inverse operator theorems and describe some other properties of the considered calculus.
Keywords: Krein class, operator monotone function, closed operator, functional calculus.
@article{IVM_2013_10_a0,
     author = {A. A. Atvinovskii and A. R. Mirotin},
     title = {On some functional calculus of closed operators in {a~Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/}
}
TY  - JOUR
AU  - A. A. Atvinovskii
AU  - A. R. Mirotin
TI  - On some functional calculus of closed operators in a~Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 15
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/
LA  - ru
ID  - IVM_2013_10_a0
ER  - 
%0 Journal Article
%A A. A. Atvinovskii
%A A. R. Mirotin
%T On some functional calculus of closed operators in a~Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-15
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/
%G ru
%F IVM_2013_10_a0
A. A. Atvinovskii; A. R. Mirotin. On some functional calculus of closed operators in a~Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/

[1] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[2] Atvinovskii A. A., Mirotin A. R., “Ob odnoznachnoi razreshimosti odnogo klassa operatornykh uravnenii”, Tr. 5-i mezhdunar. konf. “Analiticheskie metody analiza i differentsialnykh uravnenii”, v. 1, Matematicheskii analiz, In-t matem. NAN Belarusi, Minsk, 2012, 28–32

[3] Atvinovskii A. A., “Ob integralnom predstavlenii odnogo klassa analiticheskikh funktsii”, Izv. Gomelsk. gosudarstvennogo un-ta im. F. Skoriny, 2011, no. 4(67), 3–7

[4] Danford N., Shvarts Dzh. T., Lineinye operatory, v. 1, Obschaya teoriya, In. lit., M., 1962

[5] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, In. lit., M., 1962 | MR

[6] Hirsch F., “Intégrales de résolvantes et calcul simbolique”, Ann. Inst. Fourier, 22:4 (1972), 239–264 | DOI | MR | Zbl

[7] Hirsch F., “Familles d'opérateurs potentiels”, Ann. Inst. Fourier, 25:3–4 (1975), 263–288 | DOI | MR | Zbl

[8] Hirsch F., “Domaines d'opérateurs représentes comme de intégrales de resolvantes”, J. Func. Anal., 23 (1976), 199–217 | DOI | MR | Zbl

[9] Pustylnik E. I., “O funktsiyakh pozitivnykh operatorov”, Matem. sb., 119(161):1 (1982), 32–47 | MR | Zbl

[10] Berg C., Boyadzhiev K., de Laubenfels R.,, “Generation of generators of holomorphic semigroups”, J. Austral. Math. Soc. Ser. A, 55:2 (1993), 246–269 | DOI | MR | Zbl

[11] Mirotin A. R., “Obraschenie operatorno monotonnykh funktsii negativnykh operatorov v banakhovom prostranstve”, Tr. In-ta matem. (Minsk), 12:1 (2004), 104–108

[12] Rosenblum M., Rovnyak J., Hardy classes and operator theory, Oxford University Press, Oxford, 1985 | MR | Zbl