On some functional calculus of closed operators in a~Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a functional calculus of closed operators in a Banach space based on the class of functions in the form $1/g$, where $g$ belongs to the class $R[a,b]$ introduced by M. G. Krein. We prove continuity, stability, uniqueness, spectral mapping, and inverse operator theorems and describe some other properties of the considered calculus.
Keywords:
Krein class, operator monotone function, closed operator, functional calculus.
@article{IVM_2013_10_a0,
author = {A. A. Atvinovskii and A. R. Mirotin},
title = {On some functional calculus of closed operators in {a~Banach} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--15},
publisher = {mathdoc},
number = {10},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/}
}
TY - JOUR AU - A. A. Atvinovskii AU - A. R. Mirotin TI - On some functional calculus of closed operators in a~Banach space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 3 EP - 15 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/ LA - ru ID - IVM_2013_10_a0 ER -
A. A. Atvinovskii; A. R. Mirotin. On some functional calculus of closed operators in a~Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_10_a0/