Solvability of a~connected thermoelasticity problem for three-layer shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 66-71

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a new method for obtaining a priori bounds, we prove the solvability of a connected thermoelasticity problem with displacements for shallow three-layer shells within the Grigolyuk and Chulkov conjectures, taking into account the geometric nonlinearity.
Keywords: three-layer shell, partial differential equation, generalized solution of nonlinear boundary value problem.
@article{IVM_2012_9_a6,
     author = {V. F. Kirichenko},
     title = {Solvability of a~connected thermoelasticity problem for three-layer shells},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--71},
     publisher = {mathdoc},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/}
}
TY  - JOUR
AU  - V. F. Kirichenko
TI  - Solvability of a~connected thermoelasticity problem for three-layer shells
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 66
EP  - 71
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/
LA  - ru
ID  - IVM_2012_9_a6
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%T Solvability of a~connected thermoelasticity problem for three-layer shells
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 66-71
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/
%G ru
%F IVM_2012_9_a6
V. F. Kirichenko. Solvability of a~connected thermoelasticity problem for three-layer shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 66-71. http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/