Solvability of a~connected thermoelasticity problem for three-layer shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 66-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a new method for obtaining a priori bounds, we prove the solvability of a connected thermoelasticity problem with displacements for shallow three-layer shells within the Grigolyuk and Chulkov conjectures, taking into account the geometric nonlinearity.
Keywords: three-layer shell, partial differential equation, generalized solution of nonlinear boundary value problem.
@article{IVM_2012_9_a6,
     author = {V. F. Kirichenko},
     title = {Solvability of a~connected thermoelasticity problem for three-layer shells},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--71},
     publisher = {mathdoc},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/}
}
TY  - JOUR
AU  - V. F. Kirichenko
TI  - Solvability of a~connected thermoelasticity problem for three-layer shells
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 66
EP  - 71
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/
LA  - ru
ID  - IVM_2012_9_a6
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%T Solvability of a~connected thermoelasticity problem for three-layer shells
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 66-71
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/
%G ru
%F IVM_2012_9_a6
V. F. Kirichenko. Solvability of a~connected thermoelasticity problem for three-layer shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 66-71. http://geodesic.mathdoc.fr/item/IVM_2012_9_a6/

[1] Grigolyuk E. I., Chulkov P. P., Ustoichivost i kolebaniya trekhsloinykh obolochek, Mashinostroenie, M., 1973

[2] Grigolyuk E. I., Vlasov V. F., Yurkevich A. A., “Razreshimost granichnykh zadach ravnovesnogo sostoyaniya trekhsloinykh obolochek s zhestkim zapolnitelem, peredayuschim poperechnyi sdvig”, DAN SSSR, 306:4 (1989), 817–821 | MR | Zbl

[3] Golovanov A. I., Dinamicheskaya ustoichivost trekhsloinykh obolochek, Diss. $\dotsc$ kand. fiz.-matem. nauk, Kazan, 1982

[4] Kirichenko V. F., “ ‘Proektsionnye’ usloviya dvizheniya termouprugogo deformiruemogo tverdogo tela i ikh primenenie v teorii mnogosloinykh ortotropnykh obolochek”, Tr. 18 mezhdunar. konf. po teorii obolochek i plastin, v. 1, izd-vo Saratovsk. gos. tekhn. un-ta, Saratov, 1997, 144–155

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[6] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21:6 (1957), 747–784 | MR | Zbl

[7] Kirichenko V. F., Krysko V. A., “O suschestvovanii resheniya odnoi nelineinoi svyazannoi zadachi termouprugosti”, Differents. uravneniya, 20:6 (1984), 1583–1588 | MR | Zbl

[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR