A combined Tricomi problem and a~problem with a~shift for the Gellerstedt equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 32-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a combined statement of the F. Tricomi problem and that with a shift by V. I. Zhegalov and A. M. Nakhushev for the Gellerstedt equation with a singular coefficient. We prove the uniqueness of its solution with the help of the extremum principle and do its existence by the method of integral equations.
Keywords: uniqueness of a solution, F. Tricomi integral equation with a shift, Wiener–Hopf equation, index of equation.
@article{IVM_2012_9_a3,
     author = {Gulbakhor Mirsaburova},
     title = {A combined {Tricomi} problem and a~problem with a~shift for the {Gellerstedt} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--46},
     publisher = {mathdoc},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_9_a3/}
}
TY  - JOUR
AU  - Gulbakhor Mirsaburova
TI  - A combined Tricomi problem and a~problem with a~shift for the Gellerstedt equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 32
EP  - 46
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_9_a3/
LA  - ru
ID  - IVM_2012_9_a3
ER  - 
%0 Journal Article
%A Gulbakhor Mirsaburova
%T A combined Tricomi problem and a~problem with a~shift for the Gellerstedt equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 32-46
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_9_a3/
%G ru
%F IVM_2012_9_a3
Gulbakhor Mirsaburova. A combined Tricomi problem and a~problem with a~shift for the Gellerstedt equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 32-46. http://geodesic.mathdoc.fr/item/IVM_2012_9_a3/