Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of principal curvature vectors of normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces and give a geometric description of two particular classes of such submanifolds.
Keywords: $\mathrm{Ric}$-semisymmetric submanifolds, Einstein submanifolds, semi-Einstein submanifolds.
@article{IVM_2012_9_a2,
     author = {V. A. Mirzoyan and G. S. Machkalyan},
     title = {Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in {Euclidean} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--31},
     publisher = {mathdoc},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_9_a2/}
}
TY  - JOUR
AU  - V. A. Mirzoyan
AU  - G. S. Machkalyan
TI  - Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 19
EP  - 31
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_9_a2/
LA  - ru
ID  - IVM_2012_9_a2
ER  - 
%0 Journal Article
%A V. A. Mirzoyan
%A G. S. Machkalyan
%T Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 19-31
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_9_a2/
%G ru
%F IVM_2012_9_a2
V. A. Mirzoyan; G. S. Machkalyan. Normally flat $\mathrm{Ric}$-semisymmetric submanifolds in Euclidean spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2012), pp. 19-31. http://geodesic.mathdoc.fr/item/IVM_2012_9_a2/

[1] Boeckh E., Kowalski O., Vanhecke L., Riemannian manifolds of conullity two, World Sci. Publ., Singapore–River Edge, NJ, 1996 | MR

[2] Lumiste Ü., Semiparallel submanifolds in space forms, Springer, New York, 2009 | MR | Zbl

[3] Shirokov P. A., Izbrannye raboty po geometrii, Izd-vo KGU, Kazan, 1966 | MR

[4] Kartan E., Geometriya grupp Li i simmetricheskie prostranstva, In. lit., M., 1949

[5] Petrov A. Z., Prostranstva Einshteina, Fizmatgiz, M., 1961 | MR | Zbl

[6] Ferus D., “Symmetric submanifolds of Euclidean space”, Math. Ann., 247:1 (1980), 81–93 | DOI | MR | Zbl

[7] Szabo Z. I., “Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I. The local version”, J. Differen. Geom., 17:4 (1982), 531–582 | MR | Zbl

[8] Szabo Z. I., “Classification and construction of complete hypersurfaces satisfying $R(X,Y)\cdot R=0$”, Acta Sci. Math., 47:3–4 (1984), 321–348 | MR | Zbl

[9] Dillen F., Nölker S., “Semi-parallelity, multi-rotation surfaces and the helix-property”, J. Reine Angew. Math., 435 (1993), 33–63 | MR | Zbl

[10] Kowalski O., “An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$”, Czech. Math. J., 46:3 (1996), 427–474 | MR | Zbl

[11] Tanno S., “Hypersurfaces satisfying a certain condition on the Ricci tensor”, Tôhoku Math. J., 21:2 (1969), 297–303 | DOI | MR | Zbl

[12] Sekigawa K., Takagi H., “On conformally flat spaces satisfying a certain condition on the Ricci tensor”, Tôhoku Math. J., 23:1 (1971), 1–11 | DOI | MR | Zbl

[13] Sekigawa K., “On some hypersurfaces satisfying $R(X,Y)\cdot R_1=0$”, Hokkaido Math. J., 1:1 (1972), 102–109 | MR | Zbl

[14] Matsuyama Y., “Complete hypersurfaces with $R\cdot S=0$ in $E^{n+1}$”, Proc. Amer. Math. Soc., 88:1 (1983), 119–123 | MR | Zbl

[15] Mirzoyan V. A., “Strukturnye teoremy dlya rimanovykh $\mathrm{Ric}$-polusimmetricheskikh prostranstv”, Izv. vuzov. Matem., 1992, no. 6, 80–89 | MR | Zbl

[16] Mirzoyan V. A., “Klassifikatsiya $\mathrm{Ric}$-poluparallelnykh giperpoverkhnostei v evklidovykh prostranstvakh”, Matem. sb., 191:9 (2000), 65–80 | MR | Zbl

[17] Mirzoyan V. A., “Strukturnye teoremy dlya $\mathrm{Ric}$-polusimmetricheskikh podmnogoobrazii i geometricheskoe opisanie odnogo klassa minimalnykh polueinshteinovykh podmnogoobrazii”, Matem. sb., 197:7 (2006), 47–76 | MR | Zbl

[18] Mirzoyan V. A., “Klassifikatsiya odnogo klassa minimalnykh polueinshteinovykh podmnogoobrazii s integriruemym raspredeleniem kodefektnosti”, Matem. sb., 199:3 (2008), 69–94 | MR | Zbl

[19] Mirzoyan V. A., Machkalyan G. S., “Normalno ploskie minimalnye polueinshteinovy podmnogoobraziya s odnokratnymi glavnymi vektorami krivizny”, Dokl. NAN Armenii, 109:2 (2009), 119–125 | MR

[20] Mirzoyan V. A., “Normalno ploskie polueinshteinovy podmnogoobraziya v evklidovykh prostranstvakh”, Dokl. NAN Armenii, 110:4 (2010), 340–347 | MR

[21] Kobayasi Sh., Nomidzu K., Osnovy differntsialnoi geometrii, v. 2, Nauka, M., 1981

[22] Chern S. S., Chen W. H., Lam K. S., Lectures on differential geometry, World Sci. Publ., Singapore–River Edge, NJ, 1999 | MR

[23] Chern S. S., Kuiper N., “Some theorems on the isometric imbedding of compact Riemannian manifolds in Euclidean space”, Ann. Math., 56:3 (1952), 422–430 | DOI | MR | Zbl

[24] Reckziegel H., “Krümmungsflächen von isometrischen Immersionen in Räume konstanter Krümmung”, Math. Ann., 223:2 (1976), 169–181 | DOI | MR | Zbl

[25] Mirzoyan V. A., “Podmnogoobraziya s kommutiruyuschim normalnym vektornym polem”, Itogi nauki i tekhn. Probl. geometrii, 14, VINITI, M., 1983, 73–100 | MR | Zbl

[26] Mirzoyan V. A., “Lokalnaya klassifikatsiya $\mathrm{Ric}$-poluparallelnykh giperpoverkhnostei v evklidovykh prostranstvakh”, Sb. materialov godichnoi nauchn. konf. gos. inzh. un-ta Armenii (Erevan, 26–30 oktyabrya 1998), Izd-vo gos. inzh. un-ta Armenii, Erevan, 1998, 7–8

[27] Moor J. D., “Isometric immersions of Riemannian products”, J. Different. Geom., 5:1 (1971), 159–168 | MR | Zbl