Optimal control in chemical fractionation problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 53-57
Cet article a éte moissonné depuis la source Math-Net.Ru
We study a chemical fractionation process in a tower. This process is described by a system of first-order partial differential equations. We obtain the necessary optimality conditions for the optimal control problem in a class of smooth boundary controls with pointwise restrictions and perform numerical tests.
Keywords:
fractionation, flow control, smooth control, numerical method.
@article{IVM_2012_8_a5,
author = {A. V. Arguchintsev and V. P. Poplevko},
title = {Optimal control in chemical fractionation problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {53--57},
year = {2012},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_8_a5/}
}
A. V. Arguchintsev; V. P. Poplevko. Optimal control in chemical fractionation problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 53-57. http://geodesic.mathdoc.fr/item/IVM_2012_8_a5/
[1] Demidenko N. D., Potapov V. I., Shokin Yu. I., Modelirovanie i optimizatsiya sistem s raspredelennymi parametrami, Nauka, Novosibirsk, 2006
[2] Arguchintsev A. V., Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007 | Zbl
[3] Arguchintsev A. V., Poplevko V. P., “Optimalnoe upravlenie granichnymi usloviyami giperbolicheskoi sistemy na primere zadachi khimicheskoi rektifikatsii”, Tr. XV Baikalskoi mezhdunarodn. shkoly-seminara “Metody optimizatsii i ikh prilozheniya” (p. Listvyanka, oz. Baikal, 23–29 iyunya 2011), v. 3, RIO IDSTU SO RAN, Irkutsk, 2011, 36–40