The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 15-26
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove necessary and sufficient conditions for the weighted $L^1$-integrability of functions defined on $[0,1)$ in terms of Fourier coefficients with respect to a multiplicative system of bounded type. These results are counterparts of trigonometric ones by M. and S. Izumi and M. M. Robertson.
Keywords:
multiplicative systems of bounded type, weighted $L^1$-integrability, generalized monotonicity.
@article{IVM_2012_8_a1,
author = {S. S. Volosivets},
title = {The weighted $L^1$-integrability of functions and the {Parseval} equality with respect to multiplicative systems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--26},
publisher = {mathdoc},
number = {8},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/}
}
TY - JOUR AU - S. S. Volosivets TI - The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 15 EP - 26 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/ LA - ru ID - IVM_2012_8_a1 ER -
%0 Journal Article %A S. S. Volosivets %T The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 15-26 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/ %G ru %F IVM_2012_8_a1
S. S. Volosivets. The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/