The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 15-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove necessary and sufficient conditions for the weighted $L^1$-integrability of functions defined on $[0,1)$ in terms of Fourier coefficients with respect to a multiplicative system of bounded type. These results are counterparts of trigonometric ones by M. and S. Izumi and M. M. Robertson.
Keywords: multiplicative systems of bounded type, weighted $L^1$-integrability, generalized monotonicity.
@article{IVM_2012_8_a1,
     author = {S. S. Volosivets},
     title = {The weighted $L^1$-integrability of functions and the {Parseval} equality with respect to multiplicative systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 15
EP  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/
LA  - ru
ID  - IVM_2012_8_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 15-26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/
%G ru
%F IVM_2012_8_a1
S. S. Volosivets. The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2012), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2012_8_a1/