Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_7_a8, author = {V. A. Srochko}, title = {On solving the optimization problem for chemotherapy process in terms of the maximum principle}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {63--67}, publisher = {mathdoc}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/} }
TY - JOUR AU - V. A. Srochko TI - On solving the optimization problem for chemotherapy process in terms of the maximum principle JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 63 EP - 67 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/ LA - ru ID - IVM_2012_7_a8 ER -
V. A. Srochko. On solving the optimization problem for chemotherapy process in terms of the maximum principle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 63-67. http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/
[1] Antipov A. V., Bratus A. S., “Matematicheskaya model optimalnoi strategii khimioterapii s uchetom dinamiki chisla kletok neodnorodnoi opukholi”, Zhurn. vychisl. matem. i matem. fiz., 49:11 (2009), 1907–1919 | MR | Zbl
[2] Aranjo R. P., Mcelwain D. L., “A history of the study of solid tumour growth: the contribution of mathematical modeling”, Bull. Math. Biol., 66:5 (2004), 1039–1091 | DOI | MR
[3] Costa M. S., Boldrini J. L., Bassanezi R. C., “Drug kinetics and drug resistance in optimal chemotherapy”, Math. Biosciences, 125:2 (1995), 191–209 | DOI | Zbl
[4] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matem., 2009, no. 1, 3–43 | MR | Zbl