On solving the optimization problem for chemotherapy process in terms of the maximum principle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problems of optimal control for chemotherapy process based on a well-known dynamic model. The solution method is related to combining the control modes that appear according to the Pontryagin maximum principle. We construct extreme procedures of control with special sections that amplify the known strategies of therapy within the given model.
Keywords: optimal control problem, maximum principle, extremal processes.
@article{IVM_2012_7_a8,
     author = {V. A. Srochko},
     title = {On solving the optimization problem for chemotherapy process in terms of the maximum principle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/}
}
TY  - JOUR
AU  - V. A. Srochko
TI  - On solving the optimization problem for chemotherapy process in terms of the maximum principle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 63
EP  - 67
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/
LA  - ru
ID  - IVM_2012_7_a8
ER  - 
%0 Journal Article
%A V. A. Srochko
%T On solving the optimization problem for chemotherapy process in terms of the maximum principle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 63-67
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/
%G ru
%F IVM_2012_7_a8
V. A. Srochko. On solving the optimization problem for chemotherapy process in terms of the maximum principle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 63-67. http://geodesic.mathdoc.fr/item/IVM_2012_7_a8/

[1] Antipov A. V., Bratus A. S., “Matematicheskaya model optimalnoi strategii khimioterapii s uchetom dinamiki chisla kletok neodnorodnoi opukholi”, Zhurn. vychisl. matem. i matem. fiz., 49:11 (2009), 1907–1919 | MR | Zbl

[2] Aranjo R. P., Mcelwain D. L., “A history of the study of solid tumour growth: the contribution of mathematical modeling”, Bull. Math. Biol., 66:5 (2004), 1039–1091 | DOI | MR

[3] Costa M. S., Boldrini J. L., Bassanezi R. C., “Drug kinetics and drug resistance in optimal chemotherapy”, Math. Biosciences, 125:2 (1995), 191–209 | DOI | Zbl

[4] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matem., 2009, no. 1, 3–43 | MR | Zbl