A priori estimates of solutions of boundary value problems in a~band for a~class of degenerate elliptic equation of higher order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 50-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider two boundary value problems in a band for degenerate elliptic equations of higher order. These equations degenerate on one boundary of a band into the third-order equation in one variable. Problems are investigated in weight spaces, similar to weight Sobolev spaces, which norms are built using a special integral transform. We obtain a priori estimates in weight spaces of solutions of boundary value problems in a band for higher order elliptic equations degenerating at one boundary of a band into the third-order equation in one variable.
Keywords: a priori estimate, degenerate elliptic equation, Sobolev weight spaces.
@article{IVM_2012_7_a5,
     author = {A. D. Baev and S. S. Buneev},
     title = {A priori estimates of solutions of boundary value problems in a~band for a~class of degenerate elliptic equation of higher order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--53},
     publisher = {mathdoc},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a5/}
}
TY  - JOUR
AU  - A. D. Baev
AU  - S. S. Buneev
TI  - A priori estimates of solutions of boundary value problems in a~band for a~class of degenerate elliptic equation of higher order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 50
EP  - 53
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_7_a5/
LA  - ru
ID  - IVM_2012_7_a5
ER  - 
%0 Journal Article
%A A. D. Baev
%A S. S. Buneev
%T A priori estimates of solutions of boundary value problems in a~band for a~class of degenerate elliptic equation of higher order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 50-53
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_7_a5/
%G ru
%F IVM_2012_7_a5
A. D. Baev; S. S. Buneev. A priori estimates of solutions of boundary value problems in a~band for a~class of degenerate elliptic equation of higher order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 50-53. http://geodesic.mathdoc.fr/item/IVM_2012_7_a5/

[1] Vishik M. I., Grushin V. V., “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Matem. sb., 80(122):4 (1969), 455–491 | MR | Zbl

[2] Vishik M. I., Grushin V. V., “Vyrozhdayuschiesya ellipticheskie differentsialnye i psevdodifferentsialnye operatory”, UMN, 25:4 (1970), 29–56 | MR | Zbl

[3] Glushko V. P., Apriornye otsenki reshenii kraevykh zadach dlya odnogo klassa vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka, Dep. v VINITI, No 1048-79, Voronezhsk. gos. un-t, 1979

[4] Levendorskii S. Z., “Kraevye zadachi v poluprostranstve dlya kvaziellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na granitse”, Matem. sb., 111(153):4 (1980), 483–502 | MR | Zbl

[5] Iskhokov S. A., “O gladkosti resheniya ellipticheskogo uravneniya s nestepennym vyrozhdeniem”, Dokl. RAN, 378:3 (2001), 306–309 | MR | Zbl

[6] Baev A. D., “Ob odnoi kraevoi zadache v polose dlya vyrozhdayuschegosya ellipticheskogo uravneniya vysokogo poryadka”, Vestn. Samarsk. un-ta. Ser. estestv. nauki, 2008, no. 3(62), 27–39 | MR

[7] Baev A. D., “Ob obschikh kraevykh zadachakh v poluprostranstve dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. RAN, 422:6 (2008), 727–728 | MR | Zbl