On the Kolmogorov theorems on Fourier series and conjugate functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 21-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Fourier series of summable functions from spaces wider than $L_1$. We describe classes $\varphi(L)$ which contain conjugate functions, where their conjugate Fourier series converge. The obtained results are more general than the A. N. Kolmogorov theorems on the convergence of Fourier series in metrics weaker than $L_1$.
Keywords: Fourier series, conjugate functions, generalized Orlicz spaces, classes $\varphi(L)$.
@article{IVM_2012_7_a2,
     author = {V. I. Filippov},
     title = {On the {Kolmogorov} theorems on {Fourier} series and conjugate functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--34},
     publisher = {mathdoc},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_7_a2/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - On the Kolmogorov theorems on Fourier series and conjugate functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 21
EP  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_7_a2/
LA  - ru
ID  - IVM_2012_7_a2
ER  - 
%0 Journal Article
%A V. I. Filippov
%T On the Kolmogorov theorems on Fourier series and conjugate functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 21-34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_7_a2/
%G ru
%F IVM_2012_7_a2
V. I. Filippov. On the Kolmogorov theorems on Fourier series and conjugate functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2012), pp. 21-34. http://geodesic.mathdoc.fr/item/IVM_2012_7_a2/

[1] Kolmogoroff A., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fundam. Math., 7 (1925), 24–29 | Zbl

[2] Titchmarsh E. C., “On conjugate functions”, Proc. London Math Soc., 29 (1929), 49–80 | DOI | MR

[3] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[4] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\Phi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[5] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl

[6] Salem R., Essaissur les séries trigonométriques, Actual. Sci. et Industr., 862, Paris, 1940 | Zbl

[7] Filippov V. I., “Sopryazhennye funktsii i skhodimost ryadov Fure v klassakh $\varphi(L)$”, Sb. tr. 21 Mezhdunarodn. nauchn. konf., MMTT-21 (Saratov, SGTU, 2008), sektsiya 1, v. 1, 2008, 88–89

[8] Filippov V. I., “Sopryazhennaya funktsiya i ryady Fure v obobschennykh klassakh Orlicha”, Materialy Desyatoi mezhdunarodn. Kazansk. letnei nauchn. shk.-konf., Tr. matem. tsentra im. N. I. Lobachevskogo, 43, Kazan, 2011, 353–355