The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of a singular integral with the Hilbert kernel near a point where the continuous density of the integral does not satisfy the Hölder condition and, as a result, the integral, possibly, diverges.
Keywords: singular integral, weak continuity.
Mots-clés : Hilbert kernel
@article{IVM_2012_6_a6,
     author = {R. B. Salimov},
     title = {The behavior of a~singular integral with the {Hilbert} kernel near a~point where the density of the integral is weakly continuous},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--66},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 61
EP  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/
LA  - ru
ID  - IVM_2012_6_a6
ER  - 
%0 Journal Article
%A R. B. Salimov
%T The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 61-66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/
%G ru
%F IVM_2012_6_a6
R. B. Salimov. The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 61-66. http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[2] Salimov R. B., “K vychisleniyu singulyarnykh integralov s yadrom Gilberta”, Izv. vuzov. Matem., 1970, no. 12, 93–96 | MR | Zbl

[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. o-va, 5, 1956, 483–522 | MR | Zbl

[4] Krikunov Yu. M., “O zadache Trikomi s proizvodnymi v kraevom uslovii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 30–53 | MR | Zbl

[5] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970

[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1970

[7] Mityushev V., “Hilbert boundary value problem for multiply connected domains”, Complex Variables, 35:4 (1998), 283–295 | MR | Zbl

[8] Bezrodnykh S. I., Vlasov V. I., “Zadacha Rimana–Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zhurn. vychisl. matem.i matem. fiz., 42:3 (2002), 277–312 | MR | Zbl

[9] Salimov R. B., Shabalin P. L., “Zadacha Gilberta so schetnym mnozhestvom tochek razryva pervogo roda u koeffitsientov i konechnym indeksom”, Izv. vuzov. Matem., 2010, no. 3, 26–47 | MR

[10] Salimov R. B., “Vidoizmenenie novogo podkhoda k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi oblasti”, Izv. vuzov. Matem., 2011, no. 11, 46–57