Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_6_a6, author = {R. B. Salimov}, title = {The behavior of a~singular integral with the {Hilbert} kernel near a~point where the density of the integral is weakly continuous}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {61--66}, publisher = {mathdoc}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/} }
TY - JOUR AU - R. B. Salimov TI - The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 61 EP - 66 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/ LA - ru ID - IVM_2012_6_a6 ER -
%0 Journal Article %A R. B. Salimov %T The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 61-66 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/ %G ru %F IVM_2012_6_a6
R. B. Salimov. The behavior of a~singular integral with the Hilbert kernel near a~point where the density of the integral is weakly continuous. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 61-66. http://geodesic.mathdoc.fr/item/IVM_2012_6_a6/
[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl
[2] Salimov R. B., “K vychisleniyu singulyarnykh integralov s yadrom Gilberta”, Izv. vuzov. Matem., 1970, no. 12, 93–96 | MR | Zbl
[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. o-va, 5, 1956, 483–522 | MR | Zbl
[4] Krikunov Yu. M., “O zadache Trikomi s proizvodnymi v kraevom uslovii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 30–53 | MR | Zbl
[5] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970
[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1970
[7] Mityushev V., “Hilbert boundary value problem for multiply connected domains”, Complex Variables, 35:4 (1998), 283–295 | MR | Zbl
[8] Bezrodnykh S. I., Vlasov V. I., “Zadacha Rimana–Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zhurn. vychisl. matem.i matem. fiz., 42:3 (2002), 277–312 | MR | Zbl
[9] Salimov R. B., Shabalin P. L., “Zadacha Gilberta so schetnym mnozhestvom tochek razryva pervogo roda u koeffitsientov i konechnym indeksom”, Izv. vuzov. Matem., 2010, no. 3, 26–47 | MR
[10] Salimov R. B., “Vidoizmenenie novogo podkhoda k resheniyu kraevoi zadachi Gilberta dlya analiticheskoi funktsii v mnogosvyaznoi oblasti”, Izv. vuzov. Matem., 2011, no. 11, 46–57