One class of $C^*$-algebras generated by a~family of partial isometries and multiplicators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $C^*$-subalgebra of the algebra of all bounded operators on the Hilbert space of square-summable functions defined on some countable set. This algebra is generated by a family of partial isometries and the multiplier algebra isomorphic to the algebra of all bounded functions defined on the mentioned set. The operators of partial isometries satisfy relations defined by a prescribed map on the set. We show that the considered algebra is $\mathbb Z$-graduated. After that we construct the conditional expectation from the latter onto the subalgebra responding to zero. Using this conditional expectation, we prove that the algebra under consideration is nuclear.
Keywords: partial isometry, nuclear $C^*$-algebra, conditional expectation, completely positive map.
@article{IVM_2012_6_a4,
     author = {A. Yu. Kuznetsova and E. V. Patrin},
     title = {One class of $C^*$-algebras generated by a~family of partial isometries and multiplicators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--55},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a4/}
}
TY  - JOUR
AU  - A. Yu. Kuznetsova
AU  - E. V. Patrin
TI  - One class of $C^*$-algebras generated by a~family of partial isometries and multiplicators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 44
EP  - 55
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_6_a4/
LA  - ru
ID  - IVM_2012_6_a4
ER  - 
%0 Journal Article
%A A. Yu. Kuznetsova
%A E. V. Patrin
%T One class of $C^*$-algebras generated by a~family of partial isometries and multiplicators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 44-55
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_6_a4/
%G ru
%F IVM_2012_6_a4
A. Yu. Kuznetsova; E. V. Patrin. One class of $C^*$-algebras generated by a~family of partial isometries and multiplicators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 44-55. http://geodesic.mathdoc.fr/item/IVM_2012_6_a4/

[1] Davidson K. R., Popescu G., “Noncommutative disc algebras for semigroups”, Can. J. Math., 50:2 (1998), 290–311 | DOI | MR | Zbl

[2] Douglas R. G., “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128 (1972), 143–152 | DOI | MR

[3] Jang S. Y., “Generalized Toeplitz algebra of a certain non-amenable semigroup”, Bull. Korean Math. Soc., 43:2 (2006), 331–341 | MR

[4] Murphy G. J., “Generalized Toeplitz algebra of a certain non-amenable semigroup”, J. Oper. Theory, 18 (1987), 303–326 | Zbl

[5] Arzumanyan V. A., Vershik A. M., “Faktor-predstavleniya skreschennogo proizvedeniya kommutativnoi $C^*$-algebry i polugruppy ee endomorfizmov”, DAN SSSR, 238:3 (1978), 513–516 | MR | Zbl

[6] Exel R., Vershik A., $C^*$-algebras of irreversible dynamical systems, 2002, arXiv: math/0203185v1[math.OA] | MR

[7] Arzumanian V., Vershik A., “Star algebras associated with endomorphisms”, Operator algebras and group repr., Proc. of 1980 – OAGR Conf., v. 1, Pitman, 1984, 17–27 | MR

[8] Deaconu V., “Groupoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347 (1995), 1779–1786 | DOI | MR | Zbl

[9] Renault J., “Cuntz-like algebras”, Operator theoretical methods, Proceedings of the 17th international conference on operator theory (Timisoara, Romania, 2000), 371–386 | MR | Zbl

[10] Cuntz J., “On the simple $C^*$-algebras generated by isometries”, Comn. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[11] Cho I., Jorgensen P., “$C^*$-algebras generated by partial isometries”, J. Appl. Math. Comput., 26 (2008), 1–48 | DOI | MR | Zbl

[12] Cuntz J., Krieger W., “A class of $C^*$-algebras and topological Markov chains”, Invent. Math., 56:3 (1980), 251–268 | DOI | MR | Zbl

[13] Kumjian A., On certain Cuntz–Pimsner algebras, 2001, arXiv: math.OA/0108194v1 | MR

[14] Exel R., Laca M., Quigg J., Partial dynamical systems and $C^*$-algebras generated by partial isometries, 1997, arXiv: funct-an/9712007 | MR

[15] Lebedev A. V., Odzievich A., “Rasshireniya $C^*$-algebr chastichnymi izometriyami”, Matem. sb., 195:7 (2004), 37–70 | MR | Zbl

[16] Odzijewicz A., “Quantum algebras and $q$-special functions related to coherent states maps of the disc”, Comn. Math. Phys., 6192 (1998), 183–215 | DOI | MR

[17] Horowski M., Odzijewicz A., Tereszkiewicz A., Some integrable systems in nonlinear quantum optics, 2002, arXiv: math-ph/0207031 | MR

[18] Horowski M., Odzijewicz A., Tereszkiewicz A., “Integrable multi-bozon systems and orthogonal polynomials”, J. Phys. A, 34 (2001), 4353–4376 | DOI | MR | Zbl

[19] Grigoryan S., Kuznetsova A., “$C^*$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | MR | Zbl

[20] Grigoryan S. A., Kuznetsova A. Yu., “$C^*$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 88:5 (2010), 694–703 | MR

[21] Grigoryan S. A., Kuznetsova A. Yu., “$AF$-podalgebry $C^*$-algebry, porozhdennoi otobrazheniem”, Izv. vuzov. Matem., 2010, no. 3, 82–87 | MR | Zbl

[22] Grigoryan S., Kuznetsova A., “On a class of nuclear $C^*$-algebras”, Proceedings of the 23rd intenational conference on operator theory (Timisoara, Romania, 2010) (to appear)

[23] Kuznetsova A. Yu., “Ob odnom klasse $C^*$-algebr, porozhdennykh schetnym semeistvom chastichnykh izometrii”, Izv. NAN Armenii. Matem., 45:6 (2010), 51–62 | MR

[24] Blackadar B., Operator algebras, Springer, 2006 | MR | Zbl

[25] Takesaki M., “On the cross-norm of the direct product of $C^*$-algebras”, Tôhoku Math. J., 15:1 (1964), 111–122 | DOI | MR

[26] Umegaki U., “Conditional expectations in an operator algebra. I”, Tôhoku Math. J., 6:1 (1954), 177–181 | DOI | MR | Zbl

[27] Tomiyama J., “On the projection of norm one in $W^*$-algebras”, Proc. Japan Acad., 33:10 (1957), 608–612 | DOI | MR | Zbl

[28] Strătilă S., Modular theory in operator algebras, Editura Academiei Republicii Socialistic România, Bucharest, 1981 | MR | Zbl