Stability of an operator-difference scheme for thermoelasticity problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a linear three-layer operator-difference scheme with weights which generalizes a class of difference and projection-difference schemes for coupled thermoelasticity problems. Using the method of energy inequalities, we obtain stability estimates in grid energy norms under certain conditions on operator coefficients and parameters of the scheme.
Keywords: operator-difference scheme, stability, coupled thermoelasticity problems.
@article{IVM_2012_6_a1,
     author = {S. E. Zhelezovskii},
     title = {Stability of an operator-difference scheme for thermoelasticity problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--23},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_6_a1/}
}
TY  - JOUR
AU  - S. E. Zhelezovskii
TI  - Stability of an operator-difference scheme for thermoelasticity problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 14
EP  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_6_a1/
LA  - ru
ID  - IVM_2012_6_a1
ER  - 
%0 Journal Article
%A S. E. Zhelezovskii
%T Stability of an operator-difference scheme for thermoelasticity problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 14-23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_6_a1/
%G ru
%F IVM_2012_6_a1
S. E. Zhelezovskii. Stability of an operator-difference scheme for thermoelasticity problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2012), pp. 14-23. http://geodesic.mathdoc.fr/item/IVM_2012_6_a1/

[1] Zhelezovskii S. E., “O skorosti skhodimosti proektsionno-raznostnogo metoda dlya abstraktnoi svyazannoi zadachi”, Izv. vuzov. Matem., 2011, no. 9, 52–61 | Zbl

[2] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[3] Zhelezovskii S. E., “O gladkosti resheniya abstraktnoi svyazannoi zadachi tipa zadach termouprugosti”, Zhurn. vychisl. matem. i matem. fiz., 50:7 (2010), 1240–1257 | MR | Zbl

[4] Zhelezovskii S. E., “O skhodimosti metoda Galërkina dlya svyazannykh zadach termouprugosti”, Zhurn. vychisl. matem. i matem. fiz., 46:8 (2006), 1462–1474 | MR

[5] Zhelezovskii S. E., Apriornye otsenki pogreshnosti metoda Bubnova–Galërkina dlya svyazannykh zadach termouprugosti pologikh obolochek i plastin, Diss. $\dots$ kand. fiz.-matem. nauk, Kazansk. gos. un-t, Kazan, 1991

[6] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989 | MR

[7] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, 2-e izd., Editorial URSS, M., 2005

[8] Samarskii A. A., Gulin A. V., “Kriterii ustoichivosti semeistva raznostnykh skhem”, Dokl. RAN, 330:6 (1993), 694–695 | MR

[9] Samarskii A. A., Vabischevich P. N., Matus P. P., “Silnaya ustoichivost differentsialno-operatornykh i operatorno-raznostnykh skhem”, Dokl. RAN, 356:4 (1997), 455–457 | MR

[10] Samarskii A. A., Gulin A. V., Vukoslavchevich V., “Kriterii ustoichivosti dvukhsloinykh i trekhsloinykh raznostnykh skhem”, Differents. uravneniya, 34:7 (1998), 975–979 | MR

[11] Samarskii A. A., Vabischevich P. N., Makarevich E. L., Matus P. P., “Ustoichivost trekhsloinykh raznostnykh skhem na neravnomernykh po vremeni setkakh”, Dokl. RAN, 376:6 (2001), 738–741 | MR

[12] Vabischevich P. N., Matus P. P., Scheglik V. S., “Raznostnye skhemy s peremennymi vesami dlya evolyutsionnykh uravnenii vtorogo poryadka”, DAN Belarusi, 38:3 (1994), 13–15 | MR

[13] Gulin A. V., Simmetrizuemye raznostnye skhemy, Izd-vo Moskovsk. gos. un-ta, M., 2004

[14] Lyashko A. D., Karchevskii M. M., “Issledovanie odnogo klassa nelineinykh raznostnykh skhem”, Izv. vuzov. Matem., 1970, no. 7, 63–71 | MR | Zbl

[15] Lapin A. V., “O korrektnosti nelineinoi dvusloinoi raznostnoi skhemy”, Izv. vuzov. Matem., 1972, no. 9, 48–53 | MR | Zbl

[16] Lyashko A. D., “O korrektnosti nelineinykh dvukhsloinykh operatorno-raznostnykh skhem”, DAN SSSR, 215:2 (1974), 263–265 | Zbl

[17] Lapin A. V., Lyashko A. D., “O skhodimosti raznostnykh skhem dlya kvazilineinykh uravnenii, parabolicheskikh na reshenii”, Izv. vuzov. Matem., 1975, no. 12, 30–42 | MR | Zbl

[18] Lyashko A. D., Fedotov E. M., “Issledovanie nelineinykh dvukhsloinykh operatorno-raznostnykh skhem s vesami”, Differents. uravneniya, 21:7 (1985), 1217–1227 | MR | Zbl

[19] Lyashko A. D., Fedotov E. M., “Korrektnost odnogo klassa konservativnykh nelineinykh operatorno-raznostnykh skhem”, Izv. vuzov. Matem., 1985, no. 10, 47–55 | MR | Zbl

[20] Fedotov E. M., “Ob odnom klasse dvusloinykh nelineinykh operatorno-raznostnykh skhem s vesami”, Izv. vuzov. Matem., 1995, no. 4, 96–103 | MR | Zbl