Keywords: convolution algebra and moduli, analytical representation of distributions, tempered distributions, space of convolutors for the space of tempered distributions.
@article{IVM_2012_5_a6,
author = {L. G. Salekhov and L. L. Salekhova},
title = {The unique solvability of one class of multiplicative convolution equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {67--71},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/}
}
L. G. Salekhov; L. L. Salekhova. The unique solvability of one class of multiplicative convolution equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 67-71. http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/
[1] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004
[2] Bremerman G., Raspredeleniya, kompleksnye peremennye i preobrazovanie Fure, Mir, M., 1968 | Zbl
[3] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR
[4] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986
[5] Salekhov L. G., Salekhova L. L., “K resheniyu odnogo klassa uravnenii svertok v svertochnom module”, Tr. mezhdunarodn. nauch. konf. “Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy” (Sterlitamak, 24–28 iyunya 2003), v. 2, Izd-vo “Gilem”, Ufa, 2003, 199–206
[6] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR