The unique solvability of one class of multiplicative convolution equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 67-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of tempered distributions we consider a certain equations on the real axis with operations of convolution and multiplication. It contains convolution equations, in particular, ordinary differential equations with constant coefficients, finite-difference equations, functional differential equations with constant coefficients and shifts, as well as pair differential equations. Owing to the possibility of the analytical representation of distributions (the Cauchy or Hilberts transform), the considered class of equations is equivalent to a certain class of boundary value problems of the Riemann type, where equations play the role of boundary conditions in the sense of tempered distributions. As the research technique we use the Fourier transform, the generalized Fourier transform (the Carleman–Fourier transform), as well as the theory of convolution equations in the space of distributions.
Mots-clés : convolution equation, Fourier transform, Carleman–Fourier transform
Keywords: convolution algebra and moduli, analytical representation of distributions, tempered distributions, space of convolutors for the space of tempered distributions.
@article{IVM_2012_5_a6,
     author = {L. G. Salekhov and L. L. Salekhova},
     title = {The unique solvability of one class of multiplicative convolution equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--71},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/}
}
TY  - JOUR
AU  - L. G. Salekhov
AU  - L. L. Salekhova
TI  - The unique solvability of one class of multiplicative convolution equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 67
EP  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/
LA  - ru
ID  - IVM_2012_5_a6
ER  - 
%0 Journal Article
%A L. G. Salekhov
%A L. L. Salekhova
%T The unique solvability of one class of multiplicative convolution equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 67-71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/
%G ru
%F IVM_2012_5_a6
L. G. Salekhov; L. L. Salekhova. The unique solvability of one class of multiplicative convolution equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 67-71. http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/

[1] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004

[2] Bremerman G., Raspredeleniya, kompleksnye peremennye i preobrazovanie Fure, Mir, M., 1968 | Zbl

[3] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR

[4] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[5] Salekhov L. G., Salekhova L. L., “K resheniyu odnogo klassa uravnenii svertok v svertochnom module”, Tr. mezhdunarodn. nauch. konf. “Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy” (Sterlitamak, 24–28 iyunya 2003), v. 2, Izd-vo “Gilem”, Ufa, 2003, 199–206

[6] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR