Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_5_a6, author = {L. G. Salekhov and L. L. Salekhova}, title = {The unique solvability of one class of multiplicative convolution equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--71}, publisher = {mathdoc}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/} }
TY - JOUR AU - L. G. Salekhov AU - L. L. Salekhova TI - The unique solvability of one class of multiplicative convolution equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 67 EP - 71 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/ LA - ru ID - IVM_2012_5_a6 ER -
L. G. Salekhov; L. L. Salekhova. The unique solvability of one class of multiplicative convolution equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 67-71. http://geodesic.mathdoc.fr/item/IVM_2012_5_a6/
[1] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004
[2] Bremerman G., Raspredeleniya, kompleksnye peremennye i preobrazovanie Fure, Mir, M., 1968 | Zbl
[3] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR
[4] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986
[5] Salekhov L. G., Salekhova L. L., “K resheniyu odnogo klassa uravnenii svertok v svertochnom module”, Tr. mezhdunarodn. nauch. konf. “Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy” (Sterlitamak, 24–28 iyunya 2003), v. 2, Izd-vo “Gilem”, Ufa, 2003, 199–206
[6] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR