Double $SO(2,1)$-integrals and formulas for Whittaker functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of some double integral bilinear functionals with homogeneous kernels defined on a pair of representation spaces of the group $SO(2,1)$ we obtain some functional relations for Whittaker functions and calculate the sum of one series of Gauss hypergeometric functions converging to a Whittaker function.
Keywords: Whittaker functions, integral transform.
Mots-clés : group $SO(2,1)$
@article{IVM_2012_5_a5,
     author = {I. A. Shilin},
     title = {Double $SO(2,1)$-integrals and formulas for {Whittaker} functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--66},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a5/}
}
TY  - JOUR
AU  - I. A. Shilin
TI  - Double $SO(2,1)$-integrals and formulas for Whittaker functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 56
EP  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_5_a5/
LA  - ru
ID  - IVM_2012_5_a5
ER  - 
%0 Journal Article
%A I. A. Shilin
%T Double $SO(2,1)$-integrals and formulas for Whittaker functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 56-66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_5_a5/
%G ru
%F IVM_2012_5_a5
I. A. Shilin. Double $SO(2,1)$-integrals and formulas for Whittaker functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 56-66. http://geodesic.mathdoc.fr/item/IVM_2012_5_a5/

[1] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatlit, M., 1962

[2] Shilin I. A., Vestyak V. A., “Integralnye predstavleniya funktsii Lezhandra, voznikayuschie pri preobrazovanii Puassona”, Elektronnyi zhurnal “Tr. MAI”, 40 (2010) http://www.mai.ru/science/trudy/published.php?ID=22865

[3] Shilin I. A., Nizhnikov A. I., “Some formulas for Legendre functions induced by the Poisson transform”, Acta Polytechnica, 51:1 (2011), 70–73

[4] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959

[5] Vilenkin N. Ya., Shleinikova M. A., “Integralnye sootnosheniya dlya funktsii Uittekera i predstavleniya trekhmernoi gruppy Lorentsa”, Matem. sb., 81(123):2 (1970), 185–191 | MR | Zbl

[6] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady: Elementarnye funktsii, Nauka, M., 1986 | MR | Zbl

[7] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[8] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963 | MR