Method of semidefinite Lyapunov functions for systems of nonautonomous differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 28-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the method of semidefinite Lyapunov functions for analyzing the motion stability as applied to systems of nonautonomous differential equations. We prove basic stability theorems and illustrate them with examples.
Keywords: nonautonomous systems of differential equations, equilibrium, stability, Lyapunov function.
@article{IVM_2012_5_a2,
     author = {B. S. Kalitin and R. Chabour},
     title = {Method of semidefinite {Lyapunov} functions for systems of nonautonomous differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--39},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a2/}
}
TY  - JOUR
AU  - B. S. Kalitin
AU  - R. Chabour
TI  - Method of semidefinite Lyapunov functions for systems of nonautonomous differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 28
EP  - 39
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_5_a2/
LA  - ru
ID  - IVM_2012_5_a2
ER  - 
%0 Journal Article
%A B. S. Kalitin
%A R. Chabour
%T Method of semidefinite Lyapunov functions for systems of nonautonomous differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 28-39
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_5_a2/
%G ru
%F IVM_2012_5_a2
B. S. Kalitin; R. Chabour. Method of semidefinite Lyapunov functions for systems of nonautonomous differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 28-39. http://geodesic.mathdoc.fr/item/IVM_2012_5_a2/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | Zbl

[2] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980

[3] Vasilev S. N., “Metod sravneniya v analize sistem. 1”, Differents. uravneniya, 17:9 (1981), 1562–1573 ; “Метод сравнения в анализе систем. 2”, Дифференц. уравнения, 17:11 (1981), 1945–1954 ; “Метод сравнения в анализе систем. 3”, Дифференц. уравнения, 18:2 (1982), 197–205 ; “Метод сравнения в анализе систем. 4”, Дифференц. уравнения, 18:6 (1982), 938–947 | MR | MR | MR | MR

[4] Yoshizawa T., Stability theory by Liapunov's second method, Publ. Math. Soc. Japan, Tokyo, 1966 | MR | Zbl

[5] Artstein Z., “Uniform asymptotic stability via the limiting equations”, J. Diff. Equat., 27:2 (1978), 172–189 | DOI | MR | Zbl

[6] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970 | MR | Zbl

[7] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959 | MR

[8] Matrosov V. M., “Ob ustoichivosti dvizheniya”, PMM, 26:5 (1962), 885–895 | MR | Zbl

[9] Kalitin B. S., “Ustoichivost neavtonomnykh dinamicheskikh sistem”, Aktualnye zadachi teorii dinamicheskikh sistem upravleniya, IM AN BSSR, Minsk, 1989, 37–46 | MR

[10] Kalitin B. S., “K metodu znakopostoyannykh funktsii Lyapunova dlya neavtonomnykh differentsialnykh sistem”, Differents. uravneniya, 31:4 (1995), 583–590 | MR | Zbl

[11] Kalitin B. S., Murach V. A., “Ustoichivost neavtonomnykh sistem po chasti peremennykh. Metod znakopostoyannykh funktsii Lyapunova”, Vestn. Belorussk. un-ta. Ser. 1, 1995, no. 3, 71–72 | MR | Zbl

[12] Kosov A. A., “O globalnoi ustoichivosti neavtonomnykh sistem. I”, Izv. vuzov. Matem., 1997, no. 7, 28–35 | MR | Zbl

[13] Kosov A. A., “O globalnoi ustoichivosti neavtonomnykh sistem. II”, Izv. vuzov. Matem., 1997, no. 8, 33–42 | MR | Zbl

[14] Andreev A. S., Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, UlGU, Ulyanovsk, 2005

[15] Pavlikov S. V., Metod funktsionalov Lyapunova v zadachakh ustoichivosti i stabilizatsii, Monografiya, Institut upravleniya, Naberezhnye Chelny, 2010

[16] Sedova N. O., “Globalnaya asimptoticheskaya ustoichivost i stabilizatsiya v nelineinoi kaskadnoi sisteme s zapazdyvaniem”, Izv. vuzov. Matem., 2008, no. 11, 68–79 | MR | Zbl

[17] Kalitin B. S., “Ustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Differents. uravneniya, 38:11 (2002), 1565–1566 | MR | Zbl

[18] Kalitin B. S., “Razvitie metoda znakopostoyannykh funktsii Lyapunova”, Vybranyya navukovyya pratsy Belaruskaga dzyarzhaÿnaga universiteta, y 7 t., v. VI, Matematyka, BDU, Minsk, 2001, 232–257

[19] Iggidr A., Sallet G., “On the stability of nonautonomous systems”, Automatica, 39:1 (2003), 167–171 | DOI | MR | Zbl

[20] Kalitine B. S., Chabour R., “Method of semidefinite Lyapunov's function systems of nonautonomous differential equations”, Matem. modelir. i differents. uravneniya, Tez. dokl. (Minsk, 24–28 avgusta 2009), Minsk, 2009, 175–177

[21] Seibert P., “On stability relative a set and to the whole space”, Papers presented at the 5th Int. Conf. Nonlin. Oscilations (Kiev, 1969), v. 2, Izdat. Inst. Mat. Akad. Nauk USSR, 1970, 448–457

[22] Seibert P., Florio J. S., “On the reduction to a subspace of stability properties of systems in metric space”, Ann. Mat. Pura Appl. (IV), 169 (1995), 291–320 | DOI | MR | Zbl

[23] Kurzweil J., “On the reversibility of the first theorem of Lyapunov concerning the stability of motion”, Czechoslovak Math. J., 5 (1955), 382–398 | MR | Zbl

[24] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR