@article{IVM_2012_5_a1,
author = {S. Yu. Antonov},
title = {Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {13--27},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a1/}
}
TY - JOUR
AU - S. Yu. Antonov
TI - Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2012
SP - 13
EP - 27
IS - 5
UR - http://geodesic.mathdoc.fr/item/IVM_2012_5_a1/
LA - ru
ID - IVM_2012_5_a1
ER -
%0 Journal Article
%A S. Yu. Antonov
%T Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 13-27
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2012_5_a1/
%G ru
%F IVM_2012_5_a1
S. Yu. Antonov. Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 13-27. http://geodesic.mathdoc.fr/item/IVM_2012_5_a1/
[1] Dnestrovskaya tetrad: Nereshennye problemy teorii kolets i modulei, izd. 2, In-t matematiki SO AN SSSR, Novosibirsk, 1976
[2] Kemer A. R., Ideals of identities of associative algebras, Translation of Mathematical Monographs, 87, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[3] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl
[4] Averyanov I. V., “Bazis graduirovannykh tozhdestv superalgebry $M_{1,2}(F)$”, Matem. zametki, 85:4 (2009), 483–501 | MR | Zbl
[5] Antonov S. Yu., “Naimenshaya stepen graduirovannykh tozhdestv matrichnoi superalgebry $M_3(F)$”, Tr. XVIII mezhd. letnei shkoly-sem. “Volga 18' 06”, 2006, 17–22
[6] Antonov S. Yu., “Naimenshaya stepen tozhdestv podprostranstva $M_1^{(2,1)}(F)$ matrichnoi superalgebry $M^{(2,1)}(F)$”, Tr. mezhd. konferentsii KLIN-2007, v. 4, UlGTU, Ulyanovsk, 2007, 27–30
[7] Domokos M., “A generalization of a theorem of Chang”, Comm. Algebra, 23:12 (1995), 4333–4342 | DOI | MR | Zbl