On the asymptotic stability of solutions of a~class of systems of nonlinear differential equations with delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study systems of differential equations with delay whose right-hand sides are represented as sums of potential and gyroscopic components of vector fields. We assume that in the absence of a delay zero solutions of considered systems are asymptotically stable. By the Lyapunov direct method, using the Razumikhin approach, we prove that in the case of essentially nonlinear equations the asymptotic stability of zero solutions is preserved for any value of the delay.
Keywords: delay systems, asymptotic stability, Lyapunov functions, Razumikhin condition, nonstationary perturbations.
@article{IVM_2012_5_a0,
     author = {A. Yu. Aleksandrov and A. P. Zhabko},
     title = {On the asymptotic stability of solutions of a~class of systems of nonlinear differential equations with delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_5_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. P. Zhabko
TI  - On the asymptotic stability of solutions of a~class of systems of nonlinear differential equations with delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_5_a0/
LA  - ru
ID  - IVM_2012_5_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. P. Zhabko
%T On the asymptotic stability of solutions of a~class of systems of nonlinear differential equations with delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_5_a0/
%G ru
%F IVM_2012_5_a0
A. Yu. Aleksandrov; A. P. Zhabko. On the asymptotic stability of solutions of a~class of systems of nonlinear differential equations with delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2012), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2012_5_a0/

[1] Elsgolts L. E., Norkin S. B., Vvedenie v differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[3] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya, Nauchn. mir, M., 2001 | MR | Zbl

[4] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[5] Kharitonov V. L., “Funktsionaly Lyapunova s zadannoi proizvodnoi. I. Funktsionaly polnogo tipa”, Vestn. S.-Peterb. un-ta. Ser. 10, 2005, no. 1, 110–117 | MR

[6] Razumikhin B. S., “Ob ustoichivosti sistem s zapazdyvaniem”, Prikl. matem. i mekhan., 20:4 (1956), 500–512

[7] Zubov V. I., Problema ustoichivosti protsessov upravleniya, Sudpromgiz, L., 1980 | MR | Zbl

[8] Zubov V. I., Ustoichivost dvizheniya, Vyssh. shkola, M., 1973 | MR | Zbl

[9] Aleksandrov A. Yu., “Ob asimptoticheskoi ustoichivosti reshenii sistem nestatsionarnykh differentsialnykh uravnenii s odnorodnymi pravymi chastyami”, Dokl. RAN, 349:3 (1996), 295–296 | MR | Zbl

[10] Aleksandrov A. Yu., “Ob odnom metode postroeniya funktsii Lyapunova dlya nelineinykh neavtonomnykh sistem”, Izv. vuzov. Matem., 1998, no. 1, 3–10 | MR | Zbl

[11] Vinograd R. E., “Ob odnom kriterii neustoichivosti v smysle A. M. Lyapunova reshenii lineinoi sistemy obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR, 84:2 (1952), 201–204 | MR | Zbl