The Berger--Ebin theorem and harmonic maps and flows
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 84-89
Voir la notice de l'article provenant de la source Math-Net.Ru
The goal of this paper is the geometrization of the Berger–Ebin theorem. We use this theorem for studying harmonic maps and flows, in particular, the Ricci solitons. Moreover, we explain the role of a vector field in the corresponding expansions.
Keywords:
Berger–Ebin theorem, harmonic maps and flows, infinitesimal harmonic transforms.
@article{IVM_2012_4_a8,
author = {S. E. Stepanov},
title = {The {Berger--Ebin} theorem and harmonic maps and flows},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {84--89},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/}
}
S. E. Stepanov. The Berger--Ebin theorem and harmonic maps and flows. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/