The Berger--Ebin theorem and harmonic maps and flows
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is the geometrization of the Berger–Ebin theorem. We use this theorem for studying harmonic maps and flows, in particular, the Ricci solitons. Moreover, we explain the role of a vector field in the corresponding expansions.
Keywords: Berger–Ebin theorem, harmonic maps and flows, infinitesimal harmonic transforms.
@article{IVM_2012_4_a8,
     author = {S. E. Stepanov},
     title = {The {Berger--Ebin} theorem and harmonic maps and flows},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--89},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - The Berger--Ebin theorem and harmonic maps and flows
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 84
EP  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/
LA  - ru
ID  - IVM_2012_4_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T The Berger--Ebin theorem and harmonic maps and flows
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 84-89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/
%G ru
%F IVM_2012_4_a8
S. E. Stepanov. The Berger--Ebin theorem and harmonic maps and flows. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/

[1] Berger M., Ebin D., “Some decompositions of space of symmetric tensors on a Riemannian manifold”, J. Differential Geometry, 3 (1969), 379–392 | MR | Zbl

[2] Bese A., Mnogoobraziya Einshteina, V 2-kh t., v. 1, Mir, M., 1990

[3] Yano K., Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford, 1965 | MR | Zbl

[4] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR

[5] Smolnikova M. V., “O globalnoi geometrii garmonicheskikh simmetricheskikh bilineinykh differentsialnykh form”, Tr. MIAN, 236, 2002, 328–331 | MR | Zbl

[6] Stepanov S. E., Smolnikova M. V., Shandra I. G., “Infinitezimalnye garmonicheskie preobrazovaniya”, Izv. vuzov. Matem., 2004, no. 5, 69–75 | MR | Zbl

[7] Stepanov S. E., Shandra I. G., “Geometry of infinitesimal harmonic transformations”, Annals of Global Analysis and Geometry, 24 (2003), 291–299 | DOI | MR | Zbl

[8] Smolentsev H. K., “Prostranstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya: Geometriya, 31, Institut kibernetiki, Akademiya nauk Gruzii, 2005, 69–147

[9] Nore T., “Second fundamental form of a map”, Ann. Mat. Pura ed appl., 146 (1987), 281–310 | MR | Zbl

[10] Stepanov S. E., “On the global theory of some classes of mappings”, Annals of Global Analysis and Geometry, 13 (1995), 239–249 | DOI | MR | Zbl

[11] Stepanov S. E., “K teorii otobrazhenii rimanovykh mnogoobrazii v tselom”, Izv. vuzov. Matem., 1994, no. 10, 81–88 | MR | Zbl

[12] Davidov I., Sergeev A. G., “Tvistornye prostranstva i garmonicheskie otobrazheniya”, UMN, 48:3 (1993), 3–96 | MR | Zbl

[13] Nuhaud O., “Transformations infinitesimals harmoniques”, C. R. Acad. Paris Ser. A, 274 (1972), 573–576 | MR

[14] Hamilton R. S., “The Ricci flow on surfaces”, Contemp. Math., 71 (1988), 237–261 | DOI | MR

[15] Stepanov S. E., Shelepova V. N., “Zametka o solitonakh Richchi”, Matem. zametki, 86:3 (2009), 474–477 | MR | Zbl

[16] Eminenti M., La Nave G., Mantegazza C., “Ricci solitons – the equation point of view”, Manuscripta Math., 127 (2008), 345–367 | DOI | MR | Zbl