The Berger--Ebin theorem and harmonic maps and flows
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 84-89

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is the geometrization of the Berger–Ebin theorem. We use this theorem for studying harmonic maps and flows, in particular, the Ricci solitons. Moreover, we explain the role of a vector field in the corresponding expansions.
Keywords: Berger–Ebin theorem, harmonic maps and flows, infinitesimal harmonic transforms.
@article{IVM_2012_4_a8,
     author = {S. E. Stepanov},
     title = {The {Berger--Ebin} theorem and harmonic maps and flows},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--89},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - The Berger--Ebin theorem and harmonic maps and flows
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 84
EP  - 89
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/
LA  - ru
ID  - IVM_2012_4_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T The Berger--Ebin theorem and harmonic maps and flows
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 84-89
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/
%G ru
%F IVM_2012_4_a8
S. E. Stepanov. The Berger--Ebin theorem and harmonic maps and flows. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2012_4_a8/