Boundary value problems for a~hyperbolic equation with nonlocal conditions of the~I and II~kind
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider two initial-boundary value problems with nonlocal conditions. The main goal is to propose a method for proving the solvability of nonlocal problems with integral conditions of the first kind. The proposed method is based on the equivalence of a nonlocal problem with an integral condition of the first kind and a nonlocal problem with an integral condition of the second kind in a special form. We prove the unique existence of generalized solutions to both problems.
Keywords: hyperbolic equation, nonlocal problem, integral conditions, generalized solution.
@article{IVM_2012_4_a7,
     author = {L. S. Pul'kina},
     title = {Boundary value problems for a~hyperbolic equation with nonlocal conditions of {the~I} and {II~kind}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--83},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a7/}
}
TY  - JOUR
AU  - L. S. Pul'kina
TI  - Boundary value problems for a~hyperbolic equation with nonlocal conditions of the~I and II~kind
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 74
EP  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a7/
LA  - ru
ID  - IVM_2012_4_a7
ER  - 
%0 Journal Article
%A L. S. Pul'kina
%T Boundary value problems for a~hyperbolic equation with nonlocal conditions of the~I and II~kind
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 74-83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a7/
%G ru
%F IVM_2012_4_a7
L. S. Pul'kina. Boundary value problems for a~hyperbolic equation with nonlocal conditions of the~I and II~kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 74-83. http://geodesic.mathdoc.fr/item/IVM_2012_4_a7/

[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] Steklov V. A., “Zadacha ob okhlazhdenii neodnorodnogo tverdogo sterzhnya”, Soobsch. Kharkovskogo mat. o-va, 5:3–4 (1897), 136–181

[3] Lazhetich N. L., “O klassicheskoi razreshimosti smeshannoi zadachi dlya odnomernogo giperbolicheskogo uravneniya vtorogo poryadka”, Differents. uravneniya, 42:8 (2006), 1072–1077 | MR

[4] Kozhanov A. I., “O razreshimosti nekotorykh prostranstvenno nelokalnykh kraevykh zadach dlya lineinykh parabolicheskikh uravnenii”, Vestnik SamGU, 3:62 (2008), 165–174 | MR

[5] Pulkina L. S., Dyuzheva A. V., “Nelokalnaya zadacha s peremennymi po vremeni kraevymi usloviyami Steklova dlya giperbolicheskogo uravneniya”, Vestnik SamGU, 4:78 (2010), 56–64

[6] Kozhanov A. I., Pulkina L. S., “O razreshimosti nekotorykh granichnykh zadach so smescheniem dlya lineinykh giperbolicheskikh uravnenii”, Matematicheskii zhurnal instituta matematiki MO i NRK (Almaty), 2:32 (2010), 78–92