The boundary value problem for degenerate ultraparabolic equations of the Sobolev type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the first boundary value problem for a class of degenerate equations of the Sobolev type and prove existence and uniqueness theorems for regular solutions to the considered problem.
Keywords: boundary value problem, degenerate equation of Sobolev type, regular solutions, a priori estimates.
@article{IVM_2012_4_a6,
     author = {N. R. Pinigina},
     title = {The boundary value problem for degenerate ultraparabolic equations of the {Sobolev} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--73},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a6/}
}
TY  - JOUR
AU  - N. R. Pinigina
TI  - The boundary value problem for degenerate ultraparabolic equations of the Sobolev type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 65
EP  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a6/
LA  - ru
ID  - IVM_2012_4_a6
ER  - 
%0 Journal Article
%A N. R. Pinigina
%T The boundary value problem for degenerate ultraparabolic equations of the Sobolev type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 65-73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a6/
%G ru
%F IVM_2012_4_a6
N. R. Pinigina. The boundary value problem for degenerate ultraparabolic equations of the Sobolev type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 65-73. http://geodesic.mathdoc.fr/item/IVM_2012_4_a6/

[1] Kozhanov A. I., “O svoistvakh reshenii dlya odnogo klassa psevdoparabolicheskikh uravnenii”, Dokl. RAN, 326:5 (1992), 781–786 | MR | Zbl

[2] Kozhanov A. I., “Certian classes of degenerate Sobolev–Galperin equations”, Sib. Adv. Math., 4:1 (1994), 65–94 | MR | Zbl

[3] Kozhanov A. I., “O kraevykh zadachakh dlya nekotorykh klassov uravnenii vysokogo poryadka, nerazreshennykh otnositelno starshei proizvodnoi”, Sib. matem. zhurn., 35:2 (1994), 359–376 | MR | Zbl

[4] Kozhanov A. I., Composite type equation and inverse problem, VSP, Utrecht, 1999 | MR | Zbl

[5] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1985

[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, 2-e izd., Nauka, M., 1973 | MR