One sufficient condition for Hamiltonian graphs involving distances
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a 2-connected graph of order $n$ such that $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$. Then, as was proved in 1990 by G. T. Chen, $G$ is Hamiltonian. In this paper we introduce one more condition and prove that if $G$ is a 2-connected graph of order $n$ and $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$ such that $d(x,y)=2$, then $G$ is Hamiltonian.
Keywords: Hamiltonian graph, neighborhood union condition, new sufficient condition.
Mots-clés : Ore condition, Chen condition
@article{IVM_2012_4_a4,
     author = {Kewen Zhao and Lin Yue and Zhang Ping},
     title = {One sufficient condition for {Hamiltonian} graphs involving distances},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--52},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/}
}
TY  - JOUR
AU  - Kewen Zhao
AU  - Lin Yue
AU  - Zhang Ping
TI  - One sufficient condition for Hamiltonian graphs involving distances
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 46
EP  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/
LA  - ru
ID  - IVM_2012_4_a4
ER  - 
%0 Journal Article
%A Kewen Zhao
%A Lin Yue
%A Zhang Ping
%T One sufficient condition for Hamiltonian graphs involving distances
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 46-52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/
%G ru
%F IVM_2012_4_a4
Kewen Zhao; Lin Yue; Zhang Ping. One sufficient condition for Hamiltonian graphs involving distances. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/

[1] Ore O., “Note on Hamilton circuits”, Amer. Math. Monthly, 67 (1960), 55 | DOI | MR | Zbl

[2] Faudree R. J., Gould R. J., Jacobson M. S., Schelp R. H., “Neighbourhood unions and Hamiltonian properties in graphs”, J. Comb. Theory. Ser. B, 47 (1989), 1–9 | DOI | MR | Zbl

[3] Bauer D., Fan G., Veldman H. J., “Hamiltonian properties of graphs with large neighborhood unions”, Discrete Math., 96:1 (1991), 33–49 | DOI | MR | Zbl

[4] Chen G. T., “One sufficient condition for hamiltonian graphs”, J. Graph Theory, 14 (1990), 501–508 | DOI | MR | Zbl