One sufficient condition for Hamiltonian graphs involving distances
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 46-52
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a 2-connected graph of order $n$ such that $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$. Then, as was proved in 1990 by G. T. Chen, $G$ is Hamiltonian. In this paper we introduce one more condition and prove that if $G$ is a 2-connected graph of order $n$ and $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$ such that $d(x,y)=2$, then $G$ is Hamiltonian.
Keywords:
Hamiltonian graph, neighborhood union condition, new sufficient condition.
Mots-clés : Ore condition, Chen condition
Mots-clés : Ore condition, Chen condition
@article{IVM_2012_4_a4,
author = {Kewen Zhao and Lin Yue and Zhang Ping},
title = {One sufficient condition for {Hamiltonian} graphs involving distances},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {46--52},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/}
}
TY - JOUR AU - Kewen Zhao AU - Lin Yue AU - Zhang Ping TI - One sufficient condition for Hamiltonian graphs involving distances JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 46 EP - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/ LA - ru ID - IVM_2012_4_a4 ER -
Kewen Zhao; Lin Yue; Zhang Ping. One sufficient condition for Hamiltonian graphs involving distances. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2012_4_a4/