Integral bounds for simple partial fractions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 33-45
Cet article a éte moissonné depuis la source Math-Net.Ru
For $p\ge2$ we obtain bounds of $L_p$-norms of the Fourier transform of real parts of simple partial fractions. For even $p$ our estimate is sharp. We also prove a new inequality for $L_p$-norms of simple partial fractions which in some cases is stronger than the corresponding inequality obtained by V. Yu. Protasov.
Mots-clés :
simple partial fractions, Fourier transform
Keywords: Hausdorff–Young inequality, Dirichlet series.
Keywords: Hausdorff–Young inequality, Dirichlet series.
@article{IVM_2012_4_a3,
author = {I. R. Kayumov},
title = {Integral bounds for simple partial fractions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {33--45},
year = {2012},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a3/}
}
I. R. Kayumov. Integral bounds for simple partial fractions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 33-45. http://geodesic.mathdoc.fr/item/IVM_2012_4_a3/
[1] Protasov V. Yu., “Priblizhenie naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | MR | Zbl
[2] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 201:7 (2010), 53–66 | Zbl
[3] Borodin P. A., “Priblizhenie naiprosteishimi drobyami na poluosi”, Matem. sb., 200:8 (2009), 25–44 | MR | Zbl
[4] Beckner W., “Inequalities in Fourier analysis”, Ann. Math., 102:6 (1975), 159–182 | DOI | MR | Zbl
[5] Babenko K. I., “Ob odnom neravenstve v teorii integralov Fure”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 531–542 | MR | Zbl