A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 24-32
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an analog of the Poincaré–Bertrand formula for a singular Cauchy–Szegö integral in a multidimensional ball. We understand the principal value of the integral in the Cauchy sense. The obtained formula differs from that of Poincaré–Bertrand for the Cauchy integral in a complex plane.
Keywords:
Cauchy–Szegö integral, principal value of integral in Cauchy sense, rearrangement formula for iterated integrals.
@article{IVM_2012_4_a2,
author = {A. S. Katsunova and A. M. Kytmanov},
title = {A rearrangement formula for a~singular {Cauchy--Szeg\"o} integral in a~ball from~$\mathbb C^n$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {24--32},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/}
}
TY - JOUR AU - A. S. Katsunova AU - A. M. Kytmanov TI - A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 24 EP - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/ LA - ru ID - IVM_2012_4_a2 ER -
%0 Journal Article %A A. S. Katsunova %A A. M. Kytmanov %T A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 24-32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/ %G ru %F IVM_2012_4_a2
A. S. Katsunova; A. M. Kytmanov. A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 24-32. http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/