A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 24-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an analog of the Poincaré–Bertrand formula for a singular Cauchy–Szegö integral in a multidimensional ball. We understand the principal value of the integral in the Cauchy sense. The obtained formula differs from that of Poincaré–Bertrand for the Cauchy integral in a complex plane.
Keywords: Cauchy–Szegö integral, principal value of integral in Cauchy sense, rearrangement formula for iterated integrals.
@article{IVM_2012_4_a2,
     author = {A. S. Katsunova and A. M. Kytmanov},
     title = {A rearrangement formula for a~singular {Cauchy--Szeg\"o} integral in a~ball from~$\mathbb C^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--32},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/}
}
TY  - JOUR
AU  - A. S. Katsunova
AU  - A. M. Kytmanov
TI  - A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 24
EP  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/
LA  - ru
ID  - IVM_2012_4_a2
ER  - 
%0 Journal Article
%A A. S. Katsunova
%A A. M. Kytmanov
%T A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 24-32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/
%G ru
%F IVM_2012_4_a2
A. S. Katsunova; A. M. Kytmanov. A rearrangement formula for a~singular Cauchy--Szeg\"o integral in a~ball from~$\mathbb C^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 24-32. http://geodesic.mathdoc.fr/item/IVM_2012_4_a2/