The Szeg\"o function on a~non-rectifiable arc
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 12-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a simple Jordan arc in the complex plane. The Szegö function, by definition, is a holomorphic in $\mathbb C\setminus\Gamma$ function with a prescribed product of its boundary values on $\Gamma$. The problem of finding the Szegö function in the case of piecewise smooth $\Gamma$ was solved earlier. In this paper we study this problem for non-rectifiable arcs. The solution relies on properties of the Cauchy transform of certain distributions with the support on $\Gamma$.
Mots-clés : non-rectifiable arc, distribution, Cauchy transform.
Keywords: Riemann boundary value problem, Szegö function
@article{IVM_2012_4_a1,
     author = {B. A. Kats and D. B. Kats},
     title = {The {Szeg\"o} function on a~non-rectifiable arc},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--23},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a1/}
}
TY  - JOUR
AU  - B. A. Kats
AU  - D. B. Kats
TI  - The Szeg\"o function on a~non-rectifiable arc
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 12
EP  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a1/
LA  - ru
ID  - IVM_2012_4_a1
ER  - 
%0 Journal Article
%A B. A. Kats
%A D. B. Kats
%T The Szeg\"o function on a~non-rectifiable arc
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 12-23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a1/
%G ru
%F IVM_2012_4_a1
B. A. Kats; D. B. Kats. The Szeg\"o function on a~non-rectifiable arc. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 12-23. http://geodesic.mathdoc.fr/item/IVM_2012_4_a1/

[1] Deift P., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes, 3, New York University, 1999 | MR

[2] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “A Riemann–Hilbert approach to asymptotic questions for orthogonal polynomials”, J. Comput. Appl. Math., 133 (2001), 47–63 | DOI | MR | Zbl

[3] Kuijlaars A. B. J., “Riemann–Hilbert analysis for orthogonal polynomials”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Mathematics, 1817, eds. E. Koelink, W. Van Assche, Springer, Berlin, 2003, 167–210 | DOI | MR | Zbl

[4] Baratchart L., Yattselev M., “Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights”, International Mathematics Research Notices, 2010:22 (2010), 4211–4275 | DOI | MR

[5] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl

[6] Aptekarev A. I., “Tochnye konstanty ratsionalnykh approksimatsii analiticheskikh funktsii”, Matem. sb., 193:1 (2002), 3–72 | MR | Zbl

[7] Aptekarev A. I., Van Asshe W., “Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Pade approximants and complex orthogonal polynomials with varying weight”, Journal of Approximation Theory, 129 (2004), 129–166 | DOI | MR | Zbl

[8] Garifyanov F. N., “Biortogonalnye ryady, porozhdennye gruppoi diedra”, Izv. vuzov. Matem., 2001, no. 4, 11–15 | MR | Zbl

[9] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[10] Govorov N. V., Kuznetsov N. K., “Ob odnoi nelineinoi kraevoi zadache na razomknutom konture”, Teoriya funktsii, funk. analiz i ikh prilozheniya, 20 (1974), 49–63 | MR | Zbl

[11] Kats B. A., “Zadacha Rimana na razomknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1983, no. 12, 30–38 | MR | Zbl

[12] Mattila P., Melnikov M. S., “Existence and weak type inequalities for Cauchy integrals of general measure on rectifiable curves and sets”, Proc. Amer. Math. Soc., 120 (1994), 143–149 | DOI | MR | Zbl

[13] Eiderman V. Ya., “Mera Khausdorfa i emkost, svyazannaya s potentsialami Koshi”, Matem. zametki, 63:6 (1998), 923–934 | MR | Zbl

[14] Tolsa X., “Bilipschitz maps, analytic capacity and the Cauchy integral”, Ann. of Math., 162 (2005), 1243–1304 | DOI | MR | Zbl

[15] Bremerman G., Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1968 | MR | Zbl

[16] Khërmander L., “Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. I”, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[17] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR | Zbl

[18] Feder E., Fraktaly, Mir, M., 1991 | MR

[19] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[20] Kats B. A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1983, no. 4, 68–80 | MR | Zbl

[21] Abreu-Blaya R., Bory-Reyes J., Kats B. A., “Integration over non-rectifiable curves and Riemann boundary value problems”, J. Math. Anal. Appl., 380:1 (2011), 177–187 | DOI | MR | Zbl

[22] Vekua I. N., Obobschennye analiticheskie fuktsii, Nauka, M., 1988 | MR | Zbl

[23] Dolzhenko E. P., “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl