The Szeg\"o function on a~non-rectifiable arc
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 12-23
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a simple Jordan arc in the complex plane. The Szegö function, by definition, is a holomorphic in $\mathbb C\setminus\Gamma$ function with a prescribed product of its boundary values on $\Gamma$. The problem of finding the Szegö function in the case of piecewise smooth $\Gamma$ was solved earlier. In this paper we study this problem for non-rectifiable arcs. The solution relies on properties of the Cauchy transform of certain distributions with the support on $\Gamma$.
Mots-clés :
non-rectifiable arc, distribution, Cauchy transform.
Keywords: Riemann boundary value problem, Szegö function
Keywords: Riemann boundary value problem, Szegö function
@article{IVM_2012_4_a1,
author = {B. A. Kats and D. B. Kats},
title = {The {Szeg\"o} function on a~non-rectifiable arc},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {12--23},
publisher = {mathdoc},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a1/}
}
B. A. Kats; D. B. Kats. The Szeg\"o function on a~non-rectifiable arc. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 12-23. http://geodesic.mathdoc.fr/item/IVM_2012_4_a1/