A nonlocal problem for a~first-order partial differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a nonlocal problem for a first-order partial differential equation with an integral condition instead of the standard boundary one. We prove that the problem under consideration is uniquely solvable.
Keywords: nonlocal problem, integral condition, a priori estimate, generalized solution.
@article{IVM_2012_4_a0,
     author = {V. B. Dmitriev},
     title = {A nonlocal problem for a~first-order partial differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a0/}
}
TY  - JOUR
AU  - V. B. Dmitriev
TI  - A nonlocal problem for a~first-order partial differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 3
EP  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_4_a0/
LA  - ru
ID  - IVM_2012_4_a0
ER  - 
%0 Journal Article
%A V. B. Dmitriev
%T A nonlocal problem for a~first-order partial differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 3-11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_4_a0/
%G ru
%F IVM_2012_4_a0
V. B. Dmitriev. A nonlocal problem for a~first-order partial differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2012_4_a0/

[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995 | Zbl

[2] Agmon S., “Report”, Paris Conference on Partial Differential Equations, 1962

[3] Friedrichs K. O., “Symmetric positive linear differential equations”, Commun. Pure Appl. Math., 11 (1958), 333–410 | DOI | MR

[4] Hersch R., “Mixed problems in several variables”, J. Math. Mech., 12 (1963), 317–334 | MR

[5] Kreiss H.-O., “Initial boundary value problems for hyperbolic systems”, Commun. Pure Appl. Math., 23 (1970), 277–298 | DOI | MR | Zbl

[6] Balaban T., “On the mixed problem for a hyperbolic equation”, Bull. Acad. Polon. Sci. Math. Astr. Phys., 17:4 (1969), 231–235 | MR | Zbl

[7] Agranovich M. S., “Granichnye zadachi dlya sistem s parametrom”, Matem. sb., 84(126):1 (1971), 27–65 | MR | Zbl

[8] Rauch J., “$L_2$ is a continuable initial conditions for Kreiss' mixed problems”, Commun. Pure Appl. Math., 25:3 (1972), 265–285 | DOI | MR | Zbl

[9] Pulkina L. S., “Nachalno-kraevaya zadacha s nelokalnym granichnym usloviem dlya mnogomernogo giperbolicheskogo uravneniya”, Differents. uravneniya, 44:8 (2008), 1084–1089 | MR

[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[11] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Izd. 4-e, Nauka, M., 1974 | MR

[12] Trikomi F., Integralnye uravneniya, In. lit., M., 1960 | MR