Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_4_a0, author = {V. B. Dmitriev}, title = {A nonlocal problem for a~first-order partial differential equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--11}, publisher = {mathdoc}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_4_a0/} }
V. B. Dmitriev. A nonlocal problem for a~first-order partial differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2012), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2012_4_a0/
[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995 | Zbl
[2] Agmon S., “Report”, Paris Conference on Partial Differential Equations, 1962
[3] Friedrichs K. O., “Symmetric positive linear differential equations”, Commun. Pure Appl. Math., 11 (1958), 333–410 | DOI | MR
[4] Hersch R., “Mixed problems in several variables”, J. Math. Mech., 12 (1963), 317–334 | MR
[5] Kreiss H.-O., “Initial boundary value problems for hyperbolic systems”, Commun. Pure Appl. Math., 23 (1970), 277–298 | DOI | MR | Zbl
[6] Balaban T., “On the mixed problem for a hyperbolic equation”, Bull. Acad. Polon. Sci. Math. Astr. Phys., 17:4 (1969), 231–235 | MR | Zbl
[7] Agranovich M. S., “Granichnye zadachi dlya sistem s parametrom”, Matem. sb., 84(126):1 (1971), 27–65 | MR | Zbl
[8] Rauch J., “$L_2$ is a continuable initial conditions for Kreiss' mixed problems”, Commun. Pure Appl. Math., 25:3 (1972), 265–285 | DOI | MR | Zbl
[9] Pulkina L. S., “Nachalno-kraevaya zadacha s nelokalnym granichnym usloviem dlya mnogomernogo giperbolicheskogo uravneniya”, Differents. uravneniya, 44:8 (2008), 1084–1089 | MR
[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[11] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Izd. 4-e, Nauka, M., 1974 | MR
[12] Trikomi F., Integralnye uravneniya, In. lit., M., 1960 | MR