The unique solvability of a~certain nonlocal nonlinear problem with a~spatial operator strongly monotone with respect to the gradient
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 92-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear degenerate parabolic equation whose spatial operator depends on a nonlocal characteristic of the solution. We prove the uniqueness of the solution in the class of vector-valued functions that take on values in Sobolev spaces.
Mots-clés : parabolic equation
Keywords: monotone operator, nonlocal operator, uniqueness.
@article{IVM_2012_3_a9,
     author = {O. V. Glyzarina and M. F. Pavlova},
     title = {The unique solvability of a~certain nonlocal nonlinear problem with a~spatial operator strongly monotone with respect to the gradient},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--95},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/}
}
TY  - JOUR
AU  - O. V. Glyzarina
AU  - M. F. Pavlova
TI  - The unique solvability of a~certain nonlocal nonlinear problem with a~spatial operator strongly monotone with respect to the gradient
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 92
EP  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/
LA  - ru
ID  - IVM_2012_3_a9
ER  - 
%0 Journal Article
%A O. V. Glyzarina
%A M. F. Pavlova
%T The unique solvability of a~certain nonlocal nonlinear problem with a~spatial operator strongly monotone with respect to the gradient
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 92-95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/
%G ru
%F IVM_2012_3_a9
O. V. Glyzarina; M. F. Pavlova. The unique solvability of a~certain nonlocal nonlinear problem with a~spatial operator strongly monotone with respect to the gradient. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 92-95. http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/

[1] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Appl. Anal., 80:3/4 (2001), 279–315 | DOI | MR | Zbl

[2] Pavlova M. F., “O razreshimosti nelokalnykh nestatsionarnykh zadach s dvoinym vyrozhdeniem”, Differents. uravneniya, 47:8 (2011), 1148–1163

[3] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic problems, advances in quenching”, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 195:1 (2001), 14–24 | MR

[4] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki, Izd-vo Kazansk. un-ta, Kazan, 2008