The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 92-95
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a nonlinear degenerate parabolic equation whose spatial operator depends on a nonlocal characteristic of the solution. We prove the uniqueness of the solution in the class of vector-valued functions that take on values in Sobolev spaces.
Mots-clés :
parabolic equation
Keywords: monotone operator, nonlocal operator, uniqueness.
Keywords: monotone operator, nonlocal operator, uniqueness.
@article{IVM_2012_3_a9,
author = {O. V. Glyzarina and M. F. Pavlova},
title = {The unique solvability of a~certain nonlocal nonlinear problem with a~spatial operator strongly monotone with respect to the gradient},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {92--95},
year = {2012},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/}
}
TY - JOUR AU - O. V. Glyzarina AU - M. F. Pavlova TI - The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 92 EP - 95 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/ LA - ru ID - IVM_2012_3_a9 ER -
%0 Journal Article %A O. V. Glyzarina %A M. F. Pavlova %T The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 92-95 %N 3 %U http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/ %G ru %F IVM_2012_3_a9
O. V. Glyzarina; M. F. Pavlova. The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 92-95. http://geodesic.mathdoc.fr/item/IVM_2012_3_a9/
[1] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Appl. Anal., 80:3/4 (2001), 279–315 | DOI | MR | Zbl
[2] Pavlova M. F., “O razreshimosti nelokalnykh nestatsionarnykh zadach s dvoinym vyrozhdeniem”, Differents. uravneniya, 47:8 (2011), 1148–1163
[3] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic problems, advances in quenching”, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 195:1 (2001), 14–24 | MR
[4] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki, Izd-vo Kazansk. un-ta, Kazan, 2008