Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_3_a8, author = {A. A. Shcheglova and P. S. Petrenko}, title = {The $R$-observability and $R$-controllability of linear algebraic-differential systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--91}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/} }
TY - JOUR AU - A. A. Shcheglova AU - P. S. Petrenko TI - The $R$-observability and $R$-controllability of linear algebraic-differential systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 74 EP - 91 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/ LA - ru ID - IVM_2012_3_a8 ER -
%0 Journal Article %A A. A. Shcheglova %A P. S. Petrenko %T The $R$-observability and $R$-controllability of linear algebraic-differential systems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 74-91 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/ %G ru %F IVM_2012_3_a8
A. A. Shcheglova; P. S. Petrenko. The $R$-observability and $R$-controllability of linear algebraic-differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 74-91. http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/
[1] Gaishun I. V., “Kanonicheskie formy, upravlenie pokazatelyami Lyapunova i ctabiliziruemost lineinykh nestatsionarnykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1998, no. 6, 24–32 | MR | Zbl
[2] Smirnov E. Ya., Nekotorye zadachi matematicheskoi teorii upravleniya, Izd-vo LGU, L., 1981 | MR | Zbl
[3] Tonkov E. L., “Stabilizatsiya i globalnaya upravlyaemost pochti-periodicheskoi lineinoi sistemy”, Differents. uravneniya, 15:4 (1989), 758–759 | MR
[4] Tonkov E. L., “Kriterii ravnomernoi upravlyaemosti i stabilizatsiya lineinoi rekurrentnoi sistemy”, Differents. uravneniya, 15:10 (1979), 1804–1813 | MR | Zbl
[5] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Izd-vo In-ta matematiki NAN Belarusi, Minsk, 1999 | MR
[6] Gabasov R., Kirillova F., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR | Zbl
[7] D'Anzhelo G., Lineinye sistemy s peremennymi parametrami. Analiz i sintez, Mashinostroenie, M., 1974 | MR
[8] Dai L., Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | MR | Zbl
[9] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415 | DOI
[10] Cobb D. J., “Controllability, observability, and duality in singular systems”, IEEE Trans. Aut. Control, AC-29:12 (1984), 1076–1082 | DOI | MR
[11] Christodoulou M. A., Paraskevopoulos P. N., “Solvability, controllability, and observability of singular systems”, J. Opt. Cont. Theory Appl., 45:1 (1985), 53–72 | DOI | MR | Zbl
[12] Lewis F. L., “Fundamental, reachability, and observability matrices for discrete descriptor systems”, IEEE Trans. Aut. Control, AC-30:5 (1985), 502–505 | DOI | MR | Zbl
[13] Mertzios B. G., Christodoulou M. A., Symos B. L., Lewis F. L., “Direct controllability and observability time domain conditions for singular systems”, IEEE Trans. Aut. Control., AC-33:8 (1988), 788–790 | DOI | MR
[14] Lin W., Wang J. J., Soh C.-B., “Necessary and sufficient conditions for the controllability of linear interval descriptor systems”, Automatica, 34:3 (1988), 363–367 | DOI | MR
[15] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl
[16] Scheglova A. A., “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomatika i telemekhanika, 2008, no. 10, 57–80 | MR | Zbl
[17] Campbell S. L., Nichols N. K., Terrell W. J., “Duality, observability, and controllability for linear time-varying descriptor systems”, Circuits Syst. Signal Process, 10:4 (1991), 455–470 | DOI | MR | Zbl
[18] Campbell S. L., Terrell W. J., Observability of linear time varying descriptor systems, CRSC Technical Report 072389-01, Center for Research in Scientific Computatuon, North Carolina University, 2003
[19] Scheglova A. A., “Preobrazovanie lineinoi algebro-differentsialnoi sistemy k ekvivalentnoi forme”, Tr. IX Chetaevskoi Mezhd. konf. “Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem”, v. 5, Izd-vo IDSTU SO RAN, Irkutsk, 2007, 298–307
[20] Gantmakher F. R., Teoriya matrits, 6-e izd., Nauka, M., 1988 | MR | Zbl