The $R$-observability and $R$-controllability of linear algebraic-differential systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 74-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the $R$-controllability (the controllability within the attainability set) and the $R$-observability of time-varying linear differential algebraic equations (DAE). We analyze DAE under assumptions guaranteeing the existence of a structural form (which is called “the equivalent form”) with separated “differential” and “algebraic” subsystems. We prove that the existence of this form guarantees the solvability of the corresponding conjugate system, and construct a corresponding equivalent form for the conjugate DAE. We obtain conditions for the $R$-controllability and $R$-observability, in particular, in terms of controllability and observability matrices. We prove theorems that establish certain connections between these properties.
Keywords: $R$-controllability, $R$-observability, time-varying linear algebraic-differential system, conjugate system.
@article{IVM_2012_3_a8,
     author = {A. A. Shcheglova and P. S. Petrenko},
     title = {The $R$-observability and $R$-controllability of linear algebraic-differential systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--91},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/}
}
TY  - JOUR
AU  - A. A. Shcheglova
AU  - P. S. Petrenko
TI  - The $R$-observability and $R$-controllability of linear algebraic-differential systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 74
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/
LA  - ru
ID  - IVM_2012_3_a8
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%A P. S. Petrenko
%T The $R$-observability and $R$-controllability of linear algebraic-differential systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 74-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/
%G ru
%F IVM_2012_3_a8
A. A. Shcheglova; P. S. Petrenko. The $R$-observability and $R$-controllability of linear algebraic-differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 74-91. http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/

[1] Gaishun I. V., “Kanonicheskie formy, upravlenie pokazatelyami Lyapunova i ctabiliziruemost lineinykh nestatsionarnykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1998, no. 6, 24–32 | MR | Zbl

[2] Smirnov E. Ya., Nekotorye zadachi matematicheskoi teorii upravleniya, Izd-vo LGU, L., 1981 | MR | Zbl

[3] Tonkov E. L., “Stabilizatsiya i globalnaya upravlyaemost pochti-periodicheskoi lineinoi sistemy”, Differents. uravneniya, 15:4 (1989), 758–759 | MR

[4] Tonkov E. L., “Kriterii ravnomernoi upravlyaemosti i stabilizatsiya lineinoi rekurrentnoi sistemy”, Differents. uravneniya, 15:10 (1979), 1804–1813 | MR | Zbl

[5] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Izd-vo In-ta matematiki NAN Belarusi, Minsk, 1999 | MR

[6] Gabasov R., Kirillova F., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR | Zbl

[7] D'Anzhelo G., Lineinye sistemy s peremennymi parametrami. Analiz i sintez, Mashinostroenie, M., 1974 | MR

[8] Dai L., Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | MR | Zbl

[9] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415 | DOI

[10] Cobb D. J., “Controllability, observability, and duality in singular systems”, IEEE Trans. Aut. Control, AC-29:12 (1984), 1076–1082 | DOI | MR

[11] Christodoulou M. A., Paraskevopoulos P. N., “Solvability, controllability, and observability of singular systems”, J. Opt. Cont. Theory Appl., 45:1 (1985), 53–72 | DOI | MR | Zbl

[12] Lewis F. L., “Fundamental, reachability, and observability matrices for discrete descriptor systems”, IEEE Trans. Aut. Control, AC-30:5 (1985), 502–505 | DOI | MR | Zbl

[13] Mertzios B. G., Christodoulou M. A., Symos B. L., Lewis F. L., “Direct controllability and observability time domain conditions for singular systems”, IEEE Trans. Aut. Control., AC-33:8 (1988), 788–790 | DOI | MR

[14] Lin W., Wang J. J., Soh C.-B., “Necessary and sufficient conditions for the controllability of linear interval descriptor systems”, Automatica, 34:3 (1988), 363–367 | DOI | MR

[15] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl

[16] Scheglova A. A., “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomatika i telemekhanika, 2008, no. 10, 57–80 | MR | Zbl

[17] Campbell S. L., Nichols N. K., Terrell W. J., “Duality, observability, and controllability for linear time-varying descriptor systems”, Circuits Syst. Signal Process, 10:4 (1991), 455–470 | DOI | MR | Zbl

[18] Campbell S. L., Terrell W. J., Observability of linear time varying descriptor systems, CRSC Technical Report 072389-01, Center for Research in Scientific Computatuon, North Carolina University, 2003

[19] Scheglova A. A., “Preobrazovanie lineinoi algebro-differentsialnoi sistemy k ekvivalentnoi forme”, Tr. IX Chetaevskoi Mezhd. konf. “Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem”, v. 5, Izd-vo IDSTU SO RAN, Irkutsk, 2007, 298–307

[20] Gantmakher F. R., Teoriya matrits, 6-e izd., Nauka, M., 1988 | MR | Zbl