The $R$-observability and $R$-controllability of linear algebraic-differential systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 74-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the $R$-controllability (the controllability within the attainability set) and the $R$-observability of time-varying linear differential algebraic equations (DAE). We analyze DAE under assumptions guaranteeing the existence of a structural form (which is called “the equivalent form”) with separated “differential” and “algebraic” subsystems. We prove that the existence of this form guarantees the solvability of the corresponding conjugate system, and construct a corresponding equivalent form for the conjugate DAE. We obtain conditions for the $R$-controllability and $R$-observability, in particular, in terms of controllability and observability matrices. We prove theorems that establish certain connections between these properties.
Keywords: $R$-controllability, $R$-observability, time-varying linear algebraic-differential system, conjugate system.
@article{IVM_2012_3_a8,
     author = {A. A. Shcheglova and P. S. Petrenko},
     title = {The $R$-observability and $R$-controllability of linear algebraic-differential systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--91},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/}
}
TY  - JOUR
AU  - A. A. Shcheglova
AU  - P. S. Petrenko
TI  - The $R$-observability and $R$-controllability of linear algebraic-differential systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 74
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/
LA  - ru
ID  - IVM_2012_3_a8
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%A P. S. Petrenko
%T The $R$-observability and $R$-controllability of linear algebraic-differential systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 74-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/
%G ru
%F IVM_2012_3_a8
A. A. Shcheglova; P. S. Petrenko. The $R$-observability and $R$-controllability of linear algebraic-differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 74-91. http://geodesic.mathdoc.fr/item/IVM_2012_3_a8/