Nonholonomic torses of the first kind
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 51-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the three-dimensional Euclidean space we study two-dimensional nonholonomic distributions of planes orthogonal to a vector field with zero total curvature of the first kind (they are called nonholonomic torses of the first kind). Using the Cartan method [1] and a canonical moving frame, we study geometric properties of two kinds: 1) one of the principal curvatures of the first kind differs from zero (the general case); 2) both principal curvatures of the first kind equal zero (a nonholonomic plane). The result in case 2) is obtained in a general form.
Keywords: nonholonomic geometry, vector field.
Mots-clés : distribution, Pfaff equation
@article{IVM_2012_3_a6,
     author = {O. V. Tsokolova},
     title = {Nonholonomic torses of the first kind},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--61},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a6/}
}
TY  - JOUR
AU  - O. V. Tsokolova
TI  - Nonholonomic torses of the first kind
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 51
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_3_a6/
LA  - ru
ID  - IVM_2012_3_a6
ER  - 
%0 Journal Article
%A O. V. Tsokolova
%T Nonholonomic torses of the first kind
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 51-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_3_a6/
%G ru
%F IVM_2012_3_a6
O. V. Tsokolova. Nonholonomic torses of the first kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 51-61. http://geodesic.mathdoc.fr/item/IVM_2012_3_a6/

[1] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948

[2] Dubrovin B. A., Novikov S. P., Fomenko A. G., Sovremennaya geometriya, Nauka, M., 1979 | MR

[3] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Sovremen. probl. matem., 16, VINITI, M., 1987, 5–85 | MR | Zbl

[4] Laptev G. F., “Raspredelenie kasatelnykh elementov”, Itogi nauki i tekhn. Tr. geometrich. seminara, 3, VINITI, M., 1971, 29–48 | MR

[5] Aminov Yu. A., Geometriya vektornogo polya, Nauka, M., 1990 | MR | Zbl

[6] Sintsov D. M., Raboty po negolonomnoi geometrii, Vischa shkola, Kiev, 1972 | MR

[7] Slukhaev V. V., Geometriya vektornykh polei, Izd. Tomsk. un-ta, Tomsk, 1982

[8] Onischuk N. M., “Negolonomnaya giperploskost v chetyrekhmernom evklidovom prostranstve”, Vestn. Tomsk. un-ta. Matematika i mekhanika, 2008, no. 3(4), 10–21