Bisectorial operator pencils and the problem of bounded solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 31-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear differential equation unresolved with respect to the derivative. We assume that the spectrum of the corresponding pencil is contained in two sectors. We study the unique existence of a bounded solution for any bounded free term.
Keywords: bisectorial operator pencil, boundary value problem, Green function.
@article{IVM_2012_3_a4,
     author = {A. V. Pechkurov},
     title = {Bisectorial operator pencils and the problem of bounded solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--41},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a4/}
}
TY  - JOUR
AU  - A. V. Pechkurov
TI  - Bisectorial operator pencils and the problem of bounded solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 31
EP  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_3_a4/
LA  - ru
ID  - IVM_2012_3_a4
ER  - 
%0 Journal Article
%A A. V. Pechkurov
%T Bisectorial operator pencils and the problem of bounded solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 31-41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_3_a4/
%G ru
%F IVM_2012_3_a4
A. V. Pechkurov. Bisectorial operator pencils and the problem of bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 31-41. http://geodesic.mathdoc.fr/item/IVM_2012_3_a4/

[1] Perron O., “Die Stabilitätsfrage bie Differentialgleichungen”, Math. Z., 32:5 (1930), 703–728 | DOI | MR | Zbl

[2] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[3] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR

[4] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Soveremen. matem. Fundament. napravleniya, 9, MAI, M., 2004, 3–151 | MR | Zbl

[5] Baskakov A. G., Chernyshov K. I., “O polugruppakh raspredelenii s singulyarnostyu v nule i ogranichennykh resheniyakh lineinykh differentsialnykh vklyuchenii”, Matem. zametki, 79:1 (2006), 19–33 | MR | Zbl

[6] Baskakov A. G., “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | MR | Zbl

[7] Bichegkuev M. S., “K teorii beskonechno differentsiruemykh polugrupp operatorov”, Algebra i analiz, 22:2 (2010), 1–13 | MR | Zbl

[8] Khenri L., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[9] Bart H., Gohberg I., Kaashoek M. A., “Wiener–Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators”, J. Funct. Anal., 68:1 (1986), 1–42 | DOI | MR | Zbl

[10] Van der Mee C. V. M., Exponentially dichotomous operators and applications, Birkhäuser, Berlin, 2008 | MR

[11] Kurbatova I. V., “Banakhova algebra, svyazannaya s lineinym operatornym puchkom”, Matem. zametki, 86:3 (2009), 394–401 | MR | Zbl

[12] Baskakov A. G., “Spektralnye svoistva differentsialnogo operatora $\frac d{dt}-A_0$ s neogranichennym operatorom $A_0$”, Differents. uravneniya, 27:12 (1991), 2162–2164 | MR

[13] Fedorov V. E., Sagadeeva M. A., “Ob ogranichennykh na pryamoi resheniyakh lineinykh uravnenii sobolevskogo tipa s otnositelno sektorialnymi operatorami”, Izv. vuzov. Matem., 2005, no. 4, 81–84 | MR | Zbl

[14] Kurbatova I. V., “Ob obobschennoi impulsnoi kharakteristike”, Vestn. Voronezh. gos. un-ta. Fiz.-mat. nauki, 2007, no. 1, 148–152

[15] Pechkurov A. V., “Operatornye puchki, bipolugruppy i zadachi ob ogranichennykh resheniyakh”, Spectral and Evolution Problems, 21, Tavricheskii natsionalnyi universitet im. V. I. Vernadskogo, Simferopol, 2011, 75–86

[16] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1965 | MR

[17] Schwartz L., “Distributions á valeurs vectorielles”, Ann. Inst. Fourier, 7 (1957), 1–141 | DOI | MR | Zbl

[18] Schwartz L., “Distributions á valeurs vectorielles. II”, Ann. Inst. Fourier, 8 (1957), 1–209 | DOI | MR

[19] Pechkurov A. V., “Ob obratimosti v prostranstve Shvartsa operatora, porozhdennogo puchkom umerennogo rosta”, Vestn. Voronezhsk. gos. un-ta. Fiz.-matem. nauki, 2011, no. 2, 111–118