Distribution of points of one-dimensional quasilattices with respect to a~variable module
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 17-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider one-dimensional quasiperiodic Fibonacci tilings. Namely, we study sets of vertices of these tilings that represent one-dimensional quasilattices defined on the base of a parameterization by rotations of a circle, and the distribution of points of quasilattices with respect to a variable module. We show that the distribution with respect to some modules is not uniform. We describe the distribution function and its integral representation, and estimate the remainder in the problem of the distribution of points of a quasilattice for corresponding modules.
Keywords:
one-dimensional quasilattice, Fibonacci tilings, distribution function.
@article{IVM_2012_3_a2,
author = {V. V. Krasil'shchikov and A. V. Shutov},
title = {Distribution of points of one-dimensional quasilattices with respect to a~variable module},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {17--23},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_3_a2/}
}
TY - JOUR AU - V. V. Krasil'shchikov AU - A. V. Shutov TI - Distribution of points of one-dimensional quasilattices with respect to a~variable module JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 17 EP - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_3_a2/ LA - ru ID - IVM_2012_3_a2 ER -
%0 Journal Article %A V. V. Krasil'shchikov %A A. V. Shutov %T Distribution of points of one-dimensional quasilattices with respect to a~variable module %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 17-23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_3_a2/ %G ru %F IVM_2012_3_a2
V. V. Krasil'shchikov; A. V. Shutov. Distribution of points of one-dimensional quasilattices with respect to a~variable module. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2012), pp. 17-23. http://geodesic.mathdoc.fr/item/IVM_2012_3_a2/