Block projection operators in normed solid spaces of measurable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 86-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a Hermitian analog of the well-known operator triangle inequality for von Neumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the obtained results.
Keywords: von Neumann algebra, triangle inequality, normal semifinite trace, solid space of measurable operators, block projection operator.
@article{IVM_2012_2_a9,
     author = {A. M. Bikchentaev},
     title = {Block projection operators in normed solid spaces of measurable operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Block projection operators in normed solid spaces of measurable operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 86
EP  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/
LA  - ru
ID  - IVM_2012_2_a9
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Block projection operators in normed solid spaces of measurable operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 86-91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/
%G ru
%F IVM_2012_2_a9
A. M. Bikchentaev. Block projection operators in normed solid spaces of measurable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/