Block projection operators in normed solid spaces of measurable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a Hermitian analog of the well-known operator triangle inequality for von Neumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the obtained results.
Keywords: von Neumann algebra, triangle inequality, normal semifinite trace, solid space of measurable operators, block projection operator.
@article{IVM_2012_2_a9,
     author = {A. M. Bikchentaev},
     title = {Block projection operators in normed solid spaces of measurable operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Block projection operators in normed solid spaces of measurable operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 86
EP  - 91
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/
LA  - ru
ID  - IVM_2012_2_a9
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Block projection operators in normed solid spaces of measurable operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 86-91
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/
%G ru
%F IVM_2012_2_a9
A. M. Bikchentaev. Block projection operators in normed solid spaces of measurable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/

[1] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 ; Matematika (sb. perevodov), 6:1 (1962), 65–132 | DOI | MR | Zbl

[2] Chilin V. I., Medzhitov A. M., Sukochev F. A., “Isometries of non-commutative Lorentz spaces”, Math. Z., 200:4 (1989), 186–226 | DOI | MR

[3] Chilin V. I., Sukochev F. A., “Weak convergence in non-commutative symmetric spaces”, J. Operator Theory, 31:1 (1994), 35–65 | MR | Zbl

[4] Bikchentaev A. M., “Ob odnom neravenstve dlya ermitovykh operatorov”, Algebra i analiz, Mater. konf., posv. 100-letiyu B. M. Gagaeva, Kazansk. matem. o-vo, Kazan, 1997, 35–36

[5] Akemann C. A., Anderson J., Pedersen G. K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[6] Chilin V. I., “Neravenstvo treugolnika v algebrakh lokalno izmerimykh operatorov”, Matematicheskii analiz i algebra, Sb. nauch. tr., TashGU, Tashkent, 1986, 77–81 | MR | Zbl

[7] Chilin V. I., Krygin A. V., Sukochev F. A., “Extreme points of convex fully symmetric sets of measurable operators”, Integral Equations Oper. Theory, 15:2 (1992), 186–226 | DOI | MR | Zbl

[8] Kaftal V., Weiss G., “Compact derivations relative to semifinite von Neumann algebras”, J. Funct. Anal., 62:2 (1985), 202–220 | DOI | MR | Zbl

[9] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 4-e izd., ispr., Nevskii Dialekt, SPb., 2004 | MR

[11] Bikchentaev A. M., “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | MR | Zbl

[12] Hiai F., Kosaki H., “Comparison of various means for operators”, J. Funct. Anal., 163:2 (1999), 300–323 | DOI | MR | Zbl