Block projection operators in normed solid spaces of measurable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 86-91
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a Hermitian analog of the well-known operator triangle inequality for von Neumann algebras. In the semifinite case we show that a block projection operator is a linear positive contraction on a wide class of solid spaces of Segal measurable operators. We describe some applications of the obtained results.
Keywords:
von Neumann algebra, triangle inequality, normal semifinite trace, solid space of measurable operators, block projection operator.
@article{IVM_2012_2_a9,
author = {A. M. Bikchentaev},
title = {Block projection operators in normed solid spaces of measurable operators},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {86--91},
publisher = {mathdoc},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/}
}
A. M. Bikchentaev. Block projection operators in normed solid spaces of measurable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2012_2_a9/