Triangulation of $n$-tuple solvable Lie algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analog of the Lie theorem for finite-dimensional $n$-tuple solvable Lie algebras over an algebraically closed field of characteristic 0.
Mots-clés : $n$-tuple Lie algebra, module of multiplications
Keywords: representation of an $n$-tuple algebra.
@article{IVM_2012_2_a6,
     author = {N. A. Koreshkov},
     title = {Triangulation of $n$-tuple solvable {Lie} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--69},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a6/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Triangulation of $n$-tuple solvable Lie algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 65
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a6/
LA  - ru
ID  - IVM_2012_2_a6
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Triangulation of $n$-tuple solvable Lie algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 65-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a6/
%G ru
%F IVM_2012_2_a6
N. A. Koreshkov. Triangulation of $n$-tuple solvable Lie algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 65-69. http://geodesic.mathdoc.fr/item/IVM_2012_2_a6/

[1] Koreshkov N. A., “O nilpotentnosti $n$-kratnykh algebr Li i assotsiativnykh $n$-kratnykh algebr”, Izv. vuzov. Matem., 2010, no. 2, 33–38 | MR | Zbl