The optimal quasi-stationary motion of a~vibration-driven robot in a~viscous medium
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a rectilinear quasi-stationary motion of a two-mass system in a viscous medium. The motion of the system as a whole occurs due to periodic movements of the internal mass relatively to the shell. The problem is to describe the law of motion of the internal mass that provides the minimum energy consumption with a specified average velocity of the shell. We propose an algorithm for solving the problem with any law of resistance of the medium. We obtain the energy-optimal law of motion of a spherical shell in a viscous liquid.
Keywords: vibration-driven robot, energy consumption coefficient, optimal control.
@article{IVM_2012_2_a5,
     author = {A. G. Egorov and O. S. Zakharova},
     title = {The optimal quasi-stationary motion of a~vibration-driven robot in a~viscous medium},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--64},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a5/}
}
TY  - JOUR
AU  - A. G. Egorov
AU  - O. S. Zakharova
TI  - The optimal quasi-stationary motion of a~vibration-driven robot in a~viscous medium
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 57
EP  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a5/
LA  - ru
ID  - IVM_2012_2_a5
ER  - 
%0 Journal Article
%A A. G. Egorov
%A O. S. Zakharova
%T The optimal quasi-stationary motion of a~vibration-driven robot in a~viscous medium
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 57-64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a5/
%G ru
%F IVM_2012_2_a5
A. G. Egorov; O. S. Zakharova. The optimal quasi-stationary motion of a~vibration-driven robot in a~viscous medium. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 57-64. http://geodesic.mathdoc.fr/item/IVM_2012_2_a5/

[1] Chernousko F. L., “O dvizhenii tela, soderzhaschego podvizhnuyu vnutrennyuyu massu”, Dokl. RAN, 405:1 (2005), 56–60 | MR

[2] Chernousko F. L., “Analiz i optimizatsiya dvizheniya tela, upravlyaemogo posredstvom podvizhnoi vnutrennei massy”, PMM, 70:6 (2006), 915–941 | MR

[3] Chernousko F. L., “Optimalnye periodicheskie dvizheniya dvukhmassovoi sistemy v soprotivlyayuscheisya srede”, PMM, 72:2 (2008), 202–215 | MR

[4] Bolotnik N. N., Figurina T. Yu., “Optimalnoe upravlenie pryamolineinym dvizheniem tverdogo tela po sherokhovatoi ploskosti posredstvom peremescheniya dvukh vnutrennikh mass”, PMM, 72:2 (2008), 216–229 | MR | Zbl

[5] Egorov A. G., Zakharova O. S., “Optimalnoe po energeticheskim zatratam dvizhenie vibrorobota v srede s soprotivleniem”, PMM, 74:4 (2010), 620–632

[6] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974