Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_2_a4, author = {A. A. Duyunova}, title = {Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {43--56}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a4/} }
A. A. Duyunova. Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 43-56. http://geodesic.mathdoc.fr/item/IVM_2012_2_a4/
[1] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, DAN SSSR, 203:2 (1972), 263–266 | MR | Zbl
[2] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, Tr. geometr. sem., 4, VINITI, M., 1973, 179–204 | MR | Zbl
[3] Akivis M. A., Shelekhov A. M., Geometry and algebra of multidimensional three-webs, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992 | MR | Zbl
[4] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tver. gos. un-t, Tver, 2010
[5] Goldberg V. V., “Transversalno-geodezicheskie, shestiugolnye i gruppovye tri-tkani, obrazovannye poverkhnostyami raznykh razmernostei”, Sb. statei po differents. geometrii, Kalininskii gos. un-t, Kalinin, 1974, 52–64 | MR
[6] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Mosk. pedagogich. gos. un-t, M., 2003