Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 43-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a three-web formed by two $n$-parameter families of curves and an one-parameter family of hypersurfaces on a smooth manifold. For such webs we define a family of adapted frames, formulate a system of structural equations, and study differential-geometric objects that arise in differential neighborhoods up to the third order. We prove that each system of ordinary differential equations (SODE) uniquely defines some three-web. This allows us to describe properties of SODE in terms of the corresponding three-web. In particular, we characterize autonomous SODE.
Keywords: multidimensional three-web, system of ordinary differential equations, affine connection.
@article{IVM_2012_2_a4,
     author = {A. A. Duyunova},
     title = {Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--56},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a4/}
}
TY  - JOUR
AU  - A. A. Duyunova
TI  - Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 43
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a4/
LA  - ru
ID  - IVM_2012_2_a4
ER  - 
%0 Journal Article
%A A. A. Duyunova
%T Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 43-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a4/
%G ru
%F IVM_2012_2_a4
A. A. Duyunova. Three-webs $W(1,n,1)$ and associated systems of ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 43-56. http://geodesic.mathdoc.fr/item/IVM_2012_2_a4/

[1] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, DAN SSSR, 203:2 (1972), 263–266 | MR | Zbl

[2] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, Tr. geometr. sem., 4, VINITI, M., 1973, 179–204 | MR | Zbl

[3] Akivis M. A., Shelekhov A. M., Geometry and algebra of multidimensional three-webs, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992 | MR | Zbl

[4] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tver. gos. un-t, Tver, 2010

[5] Goldberg V. V., “Transversalno-geodezicheskie, shestiugolnye i gruppovye tri-tkani, obrazovannye poverkhnostyami raznykh razmernostei”, Sb. statei po differents. geometrii, Kalininskii gos. un-t, Kalinin, 1974, 52–64 | MR

[6] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Mosk. pedagogich. gos. un-t, M., 2003