The canonical structure of a~pencil of degenerate matrix functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study global properties of pencil of identically degenerate matrix functions with a compact domain of definition. Matrix functions are assumed to have a constant rank and all roots of the characteristic equation of matrix pencil are assumed to have a constant multiplicity at each point in the domain of definition. We obtain sufficient conditions for the smooth orthogonal similarity of matrix functions to the upper triangular form and sufficient conditions for the smooth equivalence of the pencil of matrix functions to its canonical form. We illustrate the obtained results with simple examples.
Keywords: matrix function, pencil, canonical structure, $p$-smoothly similar matrix functions, $p$-smoothly equivalent matrix pencils.
@article{IVM_2012_2_a2,
     author = {S. V. Gaidomak},
     title = {The canonical structure of a~pencil of degenerate matrix functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--33},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a2/}
}
TY  - JOUR
AU  - S. V. Gaidomak
TI  - The canonical structure of a~pencil of degenerate matrix functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 23
EP  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a2/
LA  - ru
ID  - IVM_2012_2_a2
ER  - 
%0 Journal Article
%A S. V. Gaidomak
%T The canonical structure of a~pencil of degenerate matrix functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 23-33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a2/
%G ru
%F IVM_2012_2_a2
S. V. Gaidomak. The canonical structure of a~pencil of degenerate matrix functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 23-33. http://geodesic.mathdoc.fr/item/IVM_2012_2_a2/

[1] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR

[2] Gaidomak S. V., “Metod splain-kollokatsii dlya lineinykh vyrozhdennykh giperbolicheskikh sistem”, Zhurn. vychisl. matem. i matem. fiz., 48:7 (2008), 1230–1249

[3] Gaidomak S. V., “Trekhsloinyi raznostnyi metod resheniya lineinykh differentsialno-algebraicheskikh sistem uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 46:4 (2010), 583–594 | MR | Zbl

[4] Gaidomak S. V., “Ob ustoichivosti neyavnoi raznostnoi skhemy dlya lineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh”, Zhurn. vychisl. matem. i matem. fiz., 50:4 (2010), 707–717 | MR | Zbl

[5] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Sibirskaya izdat. firma RAN “Nauka”, Novosibirsk, 1996 | MR | Zbl

[6] Verbitskii B. V., “Odno globalnoe svoistvo matrits-funktsii, zavisyaschikh ot neskolkikh peremennykh”, Izv. vuzov. Matem., 1978, no. 1, 8–17 | MR | Zbl

[7] Verbitskii B. V., “Ob odnom globalnom svoistve matrits-funktsii, zavisyaschikh ot neskolkikh peremennykh”, UMN, 28:5 (1973), 233–234 | MR | Zbl

[8] Verbitskii B. V., “Ob odnom globalnom svoistve matritsy-funktsii ot odnogo peremennogo”, Matem. sbornik, 91(133):1 (1973), 50–61 | MR | Zbl

[9] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004

[10] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[11] Dolež al V., “The existence of a continuous basis of a certain linear subspace of $E_r$ which depends on a parameter”, Cas. Pěst. Mat., 89 (1964), 466–468 | MR | Zbl

[12] Silverman L. M., Bucy R. S., “Generalizations of a theorem of Dolezal”, Theory of Computing Systems, 4:4 (1969), 334–339 | MR

[13] Gingold H., Hsieh P. F., “Globally analytic triangularization of a matrix function”, Linear Algebra Appl., 169 (1992), 75–101 | DOI | MR | Zbl

[14] Hsieh P. F., Sibuya Y., “A global analysis of matrices of functions of several variables”, J. Math. Anal. Appl., 14 (1966), 332–340 | DOI | MR | Zbl