Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2012_2_a2, author = {S. V. Gaidomak}, title = {The canonical structure of a~pencil of degenerate matrix functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {23--33}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a2/} }
S. V. Gaidomak. The canonical structure of a~pencil of degenerate matrix functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 23-33. http://geodesic.mathdoc.fr/item/IVM_2012_2_a2/
[1] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR
[2] Gaidomak S. V., “Metod splain-kollokatsii dlya lineinykh vyrozhdennykh giperbolicheskikh sistem”, Zhurn. vychisl. matem. i matem. fiz., 48:7 (2008), 1230–1249
[3] Gaidomak S. V., “Trekhsloinyi raznostnyi metod resheniya lineinykh differentsialno-algebraicheskikh sistem uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 46:4 (2010), 583–594 | MR | Zbl
[4] Gaidomak S. V., “Ob ustoichivosti neyavnoi raznostnoi skhemy dlya lineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh”, Zhurn. vychisl. matem. i matem. fiz., 50:4 (2010), 707–717 | MR | Zbl
[5] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Sibirskaya izdat. firma RAN “Nauka”, Novosibirsk, 1996 | MR | Zbl
[6] Verbitskii B. V., “Odno globalnoe svoistvo matrits-funktsii, zavisyaschikh ot neskolkikh peremennykh”, Izv. vuzov. Matem., 1978, no. 1, 8–17 | MR | Zbl
[7] Verbitskii B. V., “Ob odnom globalnom svoistve matrits-funktsii, zavisyaschikh ot neskolkikh peremennykh”, UMN, 28:5 (1973), 233–234 | MR | Zbl
[8] Verbitskii B. V., “Ob odnom globalnom svoistve matritsy-funktsii ot odnogo peremennogo”, Matem. sbornik, 91(133):1 (1973), 50–61 | MR | Zbl
[9] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004
[10] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR
[11] Dolež al V., “The existence of a continuous basis of a certain linear subspace of $E_r$ which depends on a parameter”, Cas. Pěst. Mat., 89 (1964), 466–468 | MR | Zbl
[12] Silverman L. M., Bucy R. S., “Generalizations of a theorem of Dolezal”, Theory of Computing Systems, 4:4 (1969), 334–339 | MR
[13] Gingold H., Hsieh P. F., “Globally analytic triangularization of a matrix function”, Linear Algebra Appl., 169 (1992), 75–101 | DOI | MR | Zbl
[14] Hsieh P. F., Sibuya Y., “A global analysis of matrices of functions of several variables”, J. Math. Anal. Appl., 14 (1966), 332–340 | DOI | MR | Zbl