One class of singular linear functional differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one class of first-order functional differential equations with a singularity in the independent variable. We obtain conditions for the Fredholm property and the solvability of the mentioned equations.
Keywords: functional differential equations, Fredholm property, solvability, boundary value problem.
Mots-clés : singular equations
@article{IVM_2012_2_a10,
     author = {I. M. Plaksina},
     title = {One class of singular linear functional differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--96},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_2_a10/}
}
TY  - JOUR
AU  - I. M. Plaksina
TI  - One class of singular linear functional differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 92
EP  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_2_a10/
LA  - ru
ID  - IVM_2012_2_a10
ER  - 
%0 Journal Article
%A I. M. Plaksina
%T One class of singular linear functional differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 92-96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_2_a10/
%G ru
%F IVM_2012_2_a10
I. M. Plaksina. One class of singular linear functional differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2012), pp. 92-96. http://geodesic.mathdoc.fr/item/IVM_2012_2_a10/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyuternykh issledovanii, M., 2002

[2] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach obyknovennykh differentsialnykh uravnenii, Zinatne, Riga, 1978 | MR

[3] Kiguradze I. T., Shekhter B. D., “Singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Novye dostizh., 30, 1987, 105–201 | MR | Zbl

[4] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, In. lit., M., 1948

[5] Kiguradze I. T., “Ob usloviyakh korrektnosti lineinykh singulyarnykh kraevykh zadach”, Differents. uravneniya, 46:2 (2010), 183–190 | MR

[6] Rachøunková I., Staněk S., Tvrdý M., “Singularities and Laplacians in boundary value problems for nonlinear differential equations”, Handbook of differential equations: ordinary differ. equat., v. 3, Handbook of Differ. Equat., Elsevier, 2006, 607–723 | MR

[7] Shindyapin A. I., “O kraevoi zadache dlya odnogo singulyarnogo uravneniya”, Differents. uravneniya, 20:3 (1984), 450–455 | MR | Zbl

[8] Labovskii S. M., “O polozhitelnykh resheniyakh dvukhtochechnoi kraevoi zadachi dlya lineinogo singulyarnogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 24:10 (1988), 1695–1704 | MR

[9] Azbelev N. V., Alvesh M. Zh., Bravyi E. I., “O singulyarnykh kraevykh zadachakh dlya lineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 1999, no. 2, 3–11 | MR | Zbl

[10] Muntean I., “The spectrum of the Cesàro operator”, Rev. Anal. Numér. Théor. Approximation. Math., 22:1 (1980), 97–105 | MR | Zbl

[11] Abdullaev A. R., “O razreshimosti zadachi Koshi dlya singulyarnogo uravneniya vtorogo poryadka v kriticheskom sluchae”, Tr. in-ta prikladnoi matematiki im. I. N. Vekua, 37, 1990, 5–12 | MR | Zbl