Problems with shifts for mixed elliptic-hyperbolic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a problem with a shift, where some characteristics are free from boundary conditions; the absent V. I. Zhegalov and A. M. Nakhushev conditions are replaced with an analog of F. Frankl condition on a segment of the degeneration line. We prove the unique solvability of the mentioned problem with the help of the extremum principle. The proof of the solvability is based on the theory of singular integral equations, Wiener–Hopf equations and Fredholm integral equations.
Keywords: principle of extremum, unique solvability, solvability, integral equations, index of equation.
Mots-clés : singular coefficient
@article{IVM_2012_1_a9,
     author = {M. Kh. Ruziev},
     title = {Problems with shifts for mixed elliptic-hyperbolic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--82},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a9/}
}
TY  - JOUR
AU  - M. Kh. Ruziev
TI  - Problems with shifts for mixed elliptic-hyperbolic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 72
EP  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a9/
LA  - ru
ID  - IVM_2012_1_a9
ER  - 
%0 Journal Article
%A M. Kh. Ruziev
%T Problems with shifts for mixed elliptic-hyperbolic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 72-82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a9/
%G ru
%F IVM_2012_1_a9
M. Kh. Ruziev. Problems with shifts for mixed elliptic-hyperbolic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 72-82. http://geodesic.mathdoc.fr/item/IVM_2012_1_a9/

[1] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na obeikh kharakteristikakh i s razryvami na perekhodnoi linii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 3–16 | MR | Zbl

[2] Nakhushev A. M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differents. uravneniya, 5:1 (1969), 44–59 | Zbl

[3] Zhegalov V. I., “Zadacha Franklya so smescheniem”, Izv. vuzov. Matem., 1979, no. 9, 11–20 | MR | Zbl

[4] Bitsadze A. V., “Ob odnoi zadache Franklya”, DAN SSSR, 109:6 (1956), 1091–1094 | MR | Zbl

[5] Devingtal Yu. V., “O suschestvovanii i edinstvennosti resheniya odnoi zadachi F. I. Franklya”, Izv. vuzov. Matem., 1958, no. 2, 39–51 | MR | Zbl

[6] Lerner M. E., Pulkin S. P., “O edinstvennosti reshenii zadach s usloviyami Franklya i Trikomi dlya obobschennogo uravneniya Lavrenteva–Bitsadze”, Differents. uravneniya, 2:9 (1966), 1256–1263 | MR

[7] Polosin A. A., “Ob odnoznachnoi razreshimosti zadachi Trikomi dlya odnoi spetsialnoi oblasti”, Differents. uravneniya, 32:3 (1996), 394–401 | MR | Zbl

[8] Salakhitdinov M. S., Mirsaburov M., “Zadacha s nelokalnym granichnym usloviem na kharakteristike dlya odnogo klassa uravnenii smeshannogo tipa”, Matem. zametki, 86:5 (2009), 748–760 | MR | Zbl

[9] Ruziev M. Kh., “O nelokalnoi zadache dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom v neogranichennoi oblasti”, Izv. vuzov. Matem., 2010, no. 11, 41–49 | MR

[10] Smirnov M. M., Uravneniya smeshannogo tipa, Vyssh. shkola, M., 1985 | MR | Zbl

[11] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[12] Nadzhafov Kh. M., “Zadacha Koshi dlya odnogo uravneniya giperbolicheskogo tipa, vyrozhdayuschegosya na granitse, s singulyarnymi koeffitsientami na linii vyrozhdeniya”, Izv. AN. AzSSR. Ser. fiz.-tekh. i matem. nauk, 1971, no. 2, 69–77 | Zbl

[13] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[14] Salakhitdinov M. S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Izd-vo NUUz, Tashkent, 2005 | Zbl

[15] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl