On tracking solutions of parabolic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 40-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a control problem for a parabolic equation. It consists in constructing an algorithm for finding a feedback control such that a solution of a given equation should track a solution of another equation generated by an unknown right-hand side. We propose two noise-resistant solution algorithms for the indicated problem. They are based on the extremal shift method well-known in the guaranteed control theory. The first algorithm is applicable in the case of “continuous” measuring of phase states, whereas the second one implies discrete measuring.
Keywords: systems with distributed parameters, control.
@article{IVM_2012_1_a4,
     author = {V. I. Maksimov},
     title = {On tracking solutions of parabolic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--48},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a4/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On tracking solutions of parabolic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 40
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a4/
LA  - ru
ID  - IVM_2012_1_a4
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On tracking solutions of parabolic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 40-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a4/
%G ru
%F IVM_2012_1_a4
V. I. Maksimov. On tracking solutions of parabolic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2012_1_a4/