The Delaunay triangulation for multidimensional surfaces and its approximative properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 31-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the Delaunay triangulation for surfaces and prove an analog of the G. Voronoi empty sphere theorem. We also prove the convergence theorem for gradients of piecewise linear approximations constructed on the Delaunay triangulation for functions differentiable on smooth surfaces.
Mots-clés : simplex, triangulation, approximation of gradient.
@article{IVM_2012_1_a3,
     author = {V. A. Klyachin and A. A. Shirokii},
     title = {The {Delaunay} triangulation for multidimensional surfaces and its approximative properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--39},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - A. A. Shirokii
TI  - The Delaunay triangulation for multidimensional surfaces and its approximative properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 31
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/
LA  - ru
ID  - IVM_2012_1_a3
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A A. A. Shirokii
%T The Delaunay triangulation for multidimensional surfaces and its approximative properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 31-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/
%G ru
%F IVM_2012_1_a3
V. A. Klyachin; A. A. Shirokii. The Delaunay triangulation for multidimensional surfaces and its approximative properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 31-39. http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/