The Delaunay triangulation for multidimensional surfaces and its approximative properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 31-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We define the Delaunay triangulation for surfaces and prove an analog of the G. Voronoi empty sphere theorem. We also prove the convergence theorem for gradients of piecewise linear approximations constructed on the Delaunay triangulation for functions differentiable on smooth surfaces.
Mots-clés :
simplex, triangulation, approximation of gradient.
@article{IVM_2012_1_a3,
author = {V. A. Klyachin and A. A. Shirokii},
title = {The {Delaunay} triangulation for multidimensional surfaces and its approximative properties},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--39},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/}
}
TY - JOUR AU - V. A. Klyachin AU - A. A. Shirokii TI - The Delaunay triangulation for multidimensional surfaces and its approximative properties JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2012 SP - 31 EP - 39 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/ LA - ru ID - IVM_2012_1_a3 ER -
%0 Journal Article %A V. A. Klyachin %A A. A. Shirokii %T The Delaunay triangulation for multidimensional surfaces and its approximative properties %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2012 %P 31-39 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/ %G ru %F IVM_2012_1_a3
V. A. Klyachin; A. A. Shirokii. The Delaunay triangulation for multidimensional surfaces and its approximative properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 31-39. http://geodesic.mathdoc.fr/item/IVM_2012_1_a3/