Fomenko–Zieschang invariants of integrable systems with symplectic singularities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 22-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of this paper extend the object domain of the Fomenko–Zieschang theory of invariants. We consider integrable Hamiltonian systems which occur on symplectic manifolds with structural singularities.
Mots-clés : Fomenko–Zieschang invariants
Keywords: symplectic singularities.
@article{IVM_2012_1_a2,
     author = {D. B. Zot'ev},
     title = {Fomenko{\textendash}Zieschang invariants of integrable systems with symplectic singularities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--30},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/}
}
TY  - JOUR
AU  - D. B. Zot'ev
TI  - Fomenko–Zieschang invariants of integrable systems with symplectic singularities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 22
EP  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/
LA  - ru
ID  - IVM_2012_1_a2
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%T Fomenko–Zieschang invariants of integrable systems with symplectic singularities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 22-30
%N 1
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/
%G ru
%F IVM_2012_1_a2
D. B. Zot'ev. Fomenko–Zieschang invariants of integrable systems with symplectic singularities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 22-30. http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/

[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Topologiya. Geometriya. Klassifikatsiya, Udmurtskii universitet, Izhevsk, 1999 | MR

[2] Fomenko A. T., Symplectic geometry, Advanced Studies in Contemporary Mathematics, 5, 2nd ed., Gordon and Breach, Luxemburg, 1995 | MR | Zbl

[3] Zotev D. B., “Fazovaya topologiya I klassa Appelrota volchka Kovalevskoi v magnitnom pole”, Fundament. i prikl. matem., 12:1 (2006), 95–128 | MR | Zbl

[4] Zotev D. B., “Kontaktnye vyrozhdeniya zamknutykh 2-form”, Matem. sb., 198:4 (2007), 47–78 | MR | Zbl

[5] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[6] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego prilozheniya, 22:4 (1988), 38–51 | MR | Zbl

[7] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[8] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[9] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regular Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl

[10] Bolsinov A. V., Rikhter P., Fomenko A. T., “Metody krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | MR | Zbl