Fomenko--Zieschang invariants of integrable systems with symplectic singularities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of this paper extend the object domain of the Fomenko–Zieschang theory of invariants. We consider integrable Hamiltonian systems which occur on symplectic manifolds with structural singularities.
Mots-clés : Fomenko–Zieschang invariants
Keywords: symplectic singularities.
@article{IVM_2012_1_a2,
     author = {D. B. Zot'ev},
     title = {Fomenko--Zieschang invariants of integrable systems with symplectic singularities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--30},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/}
}
TY  - JOUR
AU  - D. B. Zot'ev
TI  - Fomenko--Zieschang invariants of integrable systems with symplectic singularities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2012
SP  - 22
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/
LA  - ru
ID  - IVM_2012_1_a2
ER  - 
%0 Journal Article
%A D. B. Zot'ev
%T Fomenko--Zieschang invariants of integrable systems with symplectic singularities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2012
%P 22-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/
%G ru
%F IVM_2012_1_a2
D. B. Zot'ev. Fomenko--Zieschang invariants of integrable systems with symplectic singularities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2012), pp. 22-30. http://geodesic.mathdoc.fr/item/IVM_2012_1_a2/

[1] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Topologiya. Geometriya. Klassifikatsiya, Udmurtskii universitet, Izhevsk, 1999 | MR

[2] Fomenko A. T., Symplectic geometry, Advanced Studies in Contemporary Mathematics, 5, 2nd ed., Gordon and Breach, Luxemburg, 1995 | MR | Zbl

[3] Zotev D. B., “Fazovaya topologiya I klassa Appelrota volchka Kovalevskoi v magnitnom pole”, Fundament. i prikl. matem., 12:1 (2006), 95–128 | MR | Zbl

[4] Zotev D. B., “Kontaktnye vyrozhdeniya zamknutykh 2-form”, Matem. sb., 198:4 (2007), 47–78 | MR | Zbl

[5] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[6] Fomenko A. T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego prilozheniya, 22:4 (1988), 38–51 | MR | Zbl

[7] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[8] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[9] Kharlamov M. P., “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regular Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl

[10] Bolsinov A. V., Rikhter P., Fomenko A. T., “Metody krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | MR | Zbl